These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 17710264)
1. An on-chip cardiomyocyte cell network assay for stable drug screening regarding community effect of cell network size. Kaneko T; Kojima K; Yasuda K Analyst; 2007 Sep; 132(9):892-8. PubMed ID: 17710264 [TBL] [Abstract][Full Text] [Related]
2. Role of the community effect of cardiomyocyte in the entrainment and reestablishment of stable beating rhythms. Kojima K; Kaneko T; Yasuda K Biochem Biophys Res Commun; 2006 Dec; 351(1):209-15. PubMed ID: 17055457 [TBL] [Abstract][Full Text] [Related]
3. Dependence of the community effect of cultured cardiomyocytes on the cell network pattern. Kaneko T; Kojima K; Yasuda K Biochem Biophys Res Commun; 2007 May; 356(2):494-8. PubMed ID: 17359936 [TBL] [Abstract][Full Text] [Related]
4. Microelectrode array biochip: tool for in vitro drug screening based on the detection of a drug effect on dopamine release from PC12 cells. Cui HF; Ye JS; Chen Y; Chong SC; Sheu FS Anal Chem; 2006 Sep; 78(18):6347-55. PubMed ID: 16970308 [TBL] [Abstract][Full Text] [Related]
5. Construction of a cultivation system of a yeast single cell in a cell chip microchamber. Fukuda T; Shiraga S; Kato M; Suye S; Ueda M Biotechnol Prog; 2006; 22(4):944-8. PubMed ID: 16889367 [TBL] [Abstract][Full Text] [Related]
6. Two-dimensional network formation of cardiac myocytes in agar microculture chip with 1480 nm infrared laser photo-thermal etching. Kojima K; Moriguchi H; Hattori A; Kaneko T; Yasuda K Lab Chip; 2003 Nov; 3(4):292-6. PubMed ID: 15007461 [TBL] [Abstract][Full Text] [Related]
7. On-chip single-cell-based microcultivation method for analysis of genetic information and epigenetic correlation of cells. Yasuda K J Mol Recognit; 2004; 17(3):186-93. PubMed ID: 15137028 [TBL] [Abstract][Full Text] [Related]
8. On-chip constructive cell-network study (I): contribution of cardiac fibroblasts to cardiomyocyte beating synchronization and community effect. Kaneko T; Nomura F; Yasuda K J Nanobiotechnology; 2011 May; 9():21. PubMed ID: 21605419 [TBL] [Abstract][Full Text] [Related]
9. Correlation of haloperidol levels between submandibular saliva and brain in the rat. Takai N; Eto K; Uchihashi K; Yamaguchi M; Nishikawa Y Arch Oral Biol; 2006 Jul; 51(7):567-72. PubMed ID: 16426565 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical lab on a chip for high-throughput analysis of anticancer drugs efficiency. Popovtzer R; Neufeld T; Popovtzer A; Rivkin I; Margalit R; Engel D; Nudelman A; Rephaeli A; Rishpon J; Shacham-Diamand Y Nanomedicine; 2008 Jun; 4(2):121-6. PubMed ID: 18482873 [TBL] [Abstract][Full Text] [Related]
11. Effect of bone morphogenetic protein-4 on cardiac differentiation from mouse embryonic stem cells in serum-free and low-serum media. Taha MF; Valojerdi MR Int J Cardiol; 2008 Jun; 127(1):78-87. PubMed ID: 17714812 [TBL] [Abstract][Full Text] [Related]
12. Development of high-throughput screening system by single-cell reaction using microchamber array chip. Fukuda T; Kato-Murai M; Suye S; Ueda M J Biosci Bioeng; 2007 Sep; 104(3):241-3. PubMed ID: 17964493 [TBL] [Abstract][Full Text] [Related]
13. A novel type of self-beating cardiomyocytes in adult mouse ventricles. Omatsu-Kanbe M; Matsuura H Biochem Biophys Res Commun; 2009 Apr; 381(3):361-6. PubMed ID: 19222989 [TBL] [Abstract][Full Text] [Related]
14. Oxidant-induced cardiomyocyte injury: identification of the cytoprotective effect of a dopamine 1 receptor agonist using a cell-based high-throughput assay. Gerö D; Módis K; Nagy N; Szoleczky P; Tóth ZD; Dormán G; Szabó C Int J Mol Med; 2007 Nov; 20(5):749-61. PubMed ID: 17912470 [TBL] [Abstract][Full Text] [Related]
15. Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate. Cimetta E; Pizzato S; Bollini S; Serena E; De Coppi P; Elvassore N Biomed Microdevices; 2009 Apr; 11(2):389-400. PubMed ID: 18987976 [TBL] [Abstract][Full Text] [Related]
16. Skeletal myoblasts overexpressing relaxin improve differentiation and communication of primary murine cardiomyocyte cell cultures. Formigli L; Francini F; Nistri S; Margheri M; Luciani G; Naro F; Silvertown JD; Orlandini SZ; Meacci E; Bani D J Mol Cell Cardiol; 2009 Aug; 47(2):335-45. PubMed ID: 19465027 [TBL] [Abstract][Full Text] [Related]
17. Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models. Kloss D; Kurz R; Jahnke HG; Fischer M; Rothermel A; Anderegg U; Simon JC; Robitzki AA Biosens Bioelectron; 2008 May; 23(10):1473-80. PubMed ID: 18289841 [TBL] [Abstract][Full Text] [Related]
18. The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells. Yokoo N; Baba S; Kaichi S; Niwa A; Mima T; Doi H; Yamanaka S; Nakahata T; Heike T Biochem Biophys Res Commun; 2009 Sep; 387(3):482-8. PubMed ID: 19615974 [TBL] [Abstract][Full Text] [Related]
19. Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Smits AM; van Laake LW; den Ouden K; Schreurs C; Szuhai K; van Echteld CJ; Mummery CL; Doevendans PA; Goumans MJ Cardiovasc Res; 2009 Aug; 83(3):527-35. PubMed ID: 19429921 [TBL] [Abstract][Full Text] [Related]
20. A cardiomyocyte-based biosensor for antiarrhythmic drug evaluation by simultaneously monitoring cell growth and beating. Wang T; Hu N; Cao J; Wu J; Su K; Wang P Biosens Bioelectron; 2013 Nov; 49():9-13. PubMed ID: 23708811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]