BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 17710364)

  • 1. Estimating residue evolutionary conservation by introducing von Neumann entropy and a novel gap-treating approach.
    Zhang SW; Zhang YL; Pan Q; Cheng YM; Chou KC
    Amino Acids; 2008 Aug; 35(2):495-501. PubMed ID: 17710364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using the concept of Chou's pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies.
    Zhang SW; Zhang YL; Yang HF; Zhao CH; Pan Q
    Amino Acids; 2008 May; 34(4):565-72. PubMed ID: 18074191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative von Neumann entropy for evaluating amino acid conservation.
    Johansson F; Toh H
    J Bioinform Comput Biol; 2010 Oct; 8(5):809-23. PubMed ID: 20981889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ConSurf-HSSP database: the mapping of evolutionary conservation among homologs onto PDB structures.
    Glaser F; Rosenberg Y; Kessel A; Pupko T; Ben-Tal N
    Proteins; 2005 Feb; 58(3):610-7. PubMed ID: 15614759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. REVCOM: a robust Bayesian method for evolutionary rate estimation.
    Bordner AJ; Abagyan R
    Bioinformatics; 2005 May; 21(10):2315-21. PubMed ID: 15749694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting functionally important residues from sequence conservation.
    Capra JA; Singh M
    Bioinformatics; 2007 Aug; 23(15):1875-82. PubMed ID: 17519246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H2rs: deducing evolutionary and functionally important residue positions by means of an entropy and similarity based analysis of multiple sequence alignments.
    Janda JO; Popal A; Bauer J; Busch M; Klocke M; Spitzer W; Keller J; Merkl R
    BMC Bioinformatics; 2014 Apr; 15():118. PubMed ID: 24766829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scoring residue conservation.
    Valdar WS
    Proteins; 2002 Aug; 48(2):227-41. PubMed ID: 12112692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design.
    Cheng G; Qian B; Samudrala R; Baker D
    Nucleic Acids Res; 2005; 33(18):5861-7. PubMed ID: 16224101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling.
    Engelen S; Trojan LA; Sacquin-Mora S; Lavery R; Carbone A
    PLoS Comput Biol; 2009 Jan; 5(1):e1000267. PubMed ID: 19165315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring protein-protein interacting sites using residue conservation and evolutionary information.
    Wang B; Wong HS; Huang DS
    Protein Pept Lett; 2006; 13(10):999-1005. PubMed ID: 17168822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting DNA-binding sites of proteins from amino acid sequence.
    Yan C; Terribilini M; Wu F; Jernigan RL; Dobbs D; Honavar V
    BMC Bioinformatics; 2006 May; 7():262. PubMed ID: 16712732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of ligand binding sites using homologous structures and conservation at CASP8.
    Wass MN; Sternberg MJ
    Proteins; 2009; 77 Suppl 9(Suppl 9):147-51. PubMed ID: 19626715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of microRNA-binding residues in protein using a Laplacian support vector machine based on sequence information.
    Ma X; Guo J; Sun X
    J Bioinform Comput Biol; 2018 Jun; 16(3):1840009. PubMed ID: 29591488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Chou's pseudo amino acid composition based on approximate entropy and an ensemble of AdaBoost classifiers to predict protein subnuclear location.
    Jiang X; Wei R; Zhao Y; Zhang T
    Amino Acids; 2008 May; 34(4):669-75. PubMed ID: 18256886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robustness of the residue conservation score reflecting both frequencies and physicochemistries.
    Liu XS; Guo WL
    Amino Acids; 2008 May; 34(4):643-52. PubMed ID: 18175048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are protein-protein interfaces more conserved in sequence than the rest of the protein surface?
    Caffrey DR; Somaroo S; Hughes JD; Mintseris J; Huang ES
    Protein Sci; 2004 Jan; 13(1):190-202. PubMed ID: 14691234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of evolutionary conservation patterns and their influence on identifying protein functional sites.
    Fang C; Noguchi T; Yamana H
    J Bioinform Comput Biol; 2014 Oct; 12(5):1440003. PubMed ID: 25362840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein meta-functional signatures from combining sequence, structure, evolution, and amino acid property information.
    Wang K; Horst JA; Cheng G; Nickle DC; Samudrala R
    PLoS Comput Biol; 2008 Sep; 4(9):e1000181. PubMed ID: 18818722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery.
    Davey NE; Shields DC; Edwards RJ
    Bioinformatics; 2009 Feb; 25(4):443-50. PubMed ID: 19136552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.