These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 17710411)

  • 1. Is cold the new hot? Elevated ubiquitin-conjugated protein levels in tissues of Antarctic fish as evidence for cold-denaturation of proteins in vivo.
    Todgham AE; Hoaglund EA; Hofmann GE
    J Comp Physiol B; 2007 Nov; 177(8):857-66. PubMed ID: 17710411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of temperature adaptation on the ubiquitin-proteasome pathway in notothenioid fishes.
    Todgham AE; Crombie TA; Hofmann GE
    J Exp Biol; 2017 Feb; 220(Pt 3):369-378. PubMed ID: 27872216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes.
    Place SP; Zippay ML; Hofmann GE
    Am J Physiol Regul Integr Comp Physiol; 2004 Aug; 287(2):R429-36. PubMed ID: 15117724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature differentially affects adenosine triphosphatase activity in Hsc70 orthologs from Antarctic and New Zealand notothenioid fishes.
    Place SP; Hofmann GE
    Cell Stress Chaperones; 2005; 10(2):104-13. PubMed ID: 16038407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species.
    Coppes Petricorena ZL; Somero GN
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jul; 147(3):799-807. PubMed ID: 17293146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model of gene expression in extreme cold - reference transcriptome for the high-Antarctic cryopelagic notothenioid fish Pagothenia borchgrevinki.
    Bilyk KT; Cheng CH
    BMC Genomics; 2013 Sep; 14():634. PubMed ID: 24053439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of 70 kDa heat shock proteins in antarctic and New Zealand notothenioid fish.
    Carpenter CM; Hofmann GE
    Comp Biochem Physiol A Mol Integr Physiol; 2000 Feb; 125(2):229-38. PubMed ID: 10825695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of elevated temperature on membrane lipid saturation in Antarctic notothenioid fish.
    Malekar VC; Morton JD; Hider RN; Cruickshank RH; Hodge S; Metcalf VJ
    PeerJ; 2018; 6():e4765. PubMed ID: 29796342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stenotherms at sub-zero temperatures: thermal dependence of swimming performance in Antarctic fish.
    Wilson RS; Franklin CE; Davison W; Kraft P
    J Comp Physiol B; 2001 May; 171(4):263-9. PubMed ID: 11409623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freezing resistance of antifreeze-deficient larval Antarctic fish.
    Cziko PA; Evans CW; Cheng CH; DeVries AL
    J Exp Biol; 2006 Feb; 209(Pt 3):407-20. PubMed ID: 16424091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomics and comparative analysis of three antarctic notothenioid fishes.
    Shin SC; Kim SJ; Lee JK; Ahn DH; Kim MG; Lee H; Lee J; Kim BK; Park H
    PLoS One; 2012; 7(8):e43762. PubMed ID: 22916302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antarctic notothenioid fish: what are the future consequences of 'losses' and 'gains' acquired during long-term evolution at cold and stable temperatures?
    Beers JM; Jayasundara N
    J Exp Biol; 2015 Jun; 218(Pt 12):1834-45. PubMed ID: 26085661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature and immune challenges modulate the transcription of genes of the ubiquitin and apoptosis pathways in two high-latitude Notothenioid fish across the Antarctic Polar Front.
    Saravia J; Nualart D; Paschke K; Pontigo JP; Navarro JM; Vargas-Chacoff L
    Fish Physiol Biochem; 2024 Aug; 50(4):1429-1443. PubMed ID: 38658493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncommon functional properties of the first piscine 26S proteasome from the Antarctic notothenioid Trematomus bernacchii.
    Gogliettino M; Balestrieri M; Riccio A; Facchiano A; Fusco C; Palazzo VC; Rossi M; Cocca E; Palmieri G
    Biosci Rep; 2016; 36(2):. PubMed ID: 26933238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution in chronic cold: varied loss of cellular response to heat in Antarctic notothenioid fish.
    Bilyk KT; Vargas-Chacoff L; Cheng CC
    BMC Evol Biol; 2018 Sep; 18(1):143. PubMed ID: 30231868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki.
    Bilyk KT; Cheng CH
    Mar Genomics; 2014 Dec; 18 Pt B():163-71. PubMed ID: 24999838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish.
    Chen Z; Cheng CH; Zhang J; Cao L; Chen L; Zhou L; Jin Y; Ye H; Deng C; Dai Z; Xu Q; Hu P; Sun S; Shen Y; Chen L
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12944-9. PubMed ID: 18753634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Metabolic Capacity of Antarctic Fishes to Acclimate to Future Ocean Conditions.
    Todgham AE; Mandic M
    Integr Comp Biol; 2020 Dec; 60(6):1425-1437. PubMed ID: 32814956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into evolution of IgT genes coming from Antarctic teleosts.
    Giacomelli S; Buonocore F; Albanese F; Scapigliati G; Gerdol M; Oreste U; Coscia MR
    Mar Genomics; 2015 Dec; 24 Pt 1():55-68. PubMed ID: 26122835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total Mercury in Six Antarctic Notothenioid Fishes.
    Wintle NJ; Sleadd IM; Gundersen DT; Kohl K; Buckley BA
    Bull Environ Contam Toxicol; 2015 Nov; 95(5):557-60. PubMed ID: 26155962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.