BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17710447)

  • 1. Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal.
    Gonçalves SC; Portugal A; Gonçalves MT; Vieira R; Martins-Loução MA; Freitas H
    Mycorrhiza; 2007 Nov; 17(8):677-686. PubMed ID: 17710447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils.
    Gonçalves SC; Martins-Loução MA; Freitas H
    Mycorrhiza; 2009 Apr; 19(4):221-230. PubMed ID: 19002506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultramafic soils from New Caledonia structure Pisolithus albus in ecotype.
    Jourand P; Ducousso M; Loulergue-Majorel C; Hannibal L; Santoni S; Prin Y; Lebrun M
    FEMS Microbiol Ecol; 2010 May; 72(2):238-49. PubMed ID: 20199570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectomycorrhizal fungal communities of oak savanna are distinct from forest communities.
    Dickie IA; Dentinger BT; Avis PG; McLaughlin DJ; Reich PB
    Mycologia; 2009; 101(4):473-83. PubMed ID: 19623927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic diversity of 200+ isolates of the ectomycorrhizal fungus Cenococcum geophilum associated with Populus trichocarpa soils in the Pacific Northwest, USA and comparison to globally distributed representatives.
    Vélez JM; Morris RM; Vilgalys R; Labbé J; Schadt CW
    PLoS One; 2021; 16(1):e0231367. PubMed ID: 33406078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation source matters: sclerotia and ectomycorrhizal roots provide different views of genetic diversity in Cenococcum geophilum.
    Obase K; Douhan GW; Matsuda Y; Smith ME
    Mycologia; 2018; 110(3):473-481. PubMed ID: 29923792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic divergence in a local population of the ectomycorrhizal fungus Cenococcum geophilum.
    Douhan GW; Rizzo DM
    New Phytol; 2005 Apr; 166(1):263-71. PubMed ID: 15760369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations.
    Jourand P; Ducousso M; Reid R; Majorel C; Richert C; Riss J; Lebrun M
    Tree Physiol; 2010 Oct; 30(10):1311-9. PubMed ID: 20688880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large and variable genome size unrelated to serpentine adaptation but supportive of cryptic sexuality in Cenococcum geophilum.
    Bourne EC; Mina D; Gonçalves SC; Loureiro J; Freitas H; Muller LA
    Mycorrhiza; 2014 Jan; 24(1):13-20. PubMed ID: 23754539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serpentine soils promote ectomycorrhizal fungal diversity.
    Branco S
    Mol Ecol; 2010 Dec; 19(24):5566-76. PubMed ID: 21062385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific regions in the Sod1 locus of the ericoid mycorrhizal fungus Oidiodendron maius from metal-enriched soils show a different sequence polymorphism.
    Vallino M; Zampieri E; Murat C; Girlanda M; Picarella S; Pitet M; Portis E; Martino E; Perotto S
    FEMS Microbiol Ecol; 2011 Feb; 75(2):321-31. PubMed ID: 21155849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Culturable fungal assemblages growing within Cenococcum sclerotia in forest soils.
    Obase K; Douhan GW; Matsuda Y; Smith ME
    FEMS Microbiol Ecol; 2014 Dec; 90(3):708-17. PubMed ID: 25229424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectomycorrhizal fungal assemblages of Abies alba Mill. outside its native range in Poland.
    Rudawska M; Pietras M; Smutek I; Strzeliński P; Leski T
    Mycorrhiza; 2016 Jan; 26(1):57-65. PubMed ID: 26071873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils.
    Doherty JH; Ji B; Casper BB
    Environ Pollut; 2008 Feb; 151(3):593-8. PubMed ID: 17555852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial distribution and genetic structure of Cenococcum geophilum in coastal pine forests in Japan.
    Matsuda Y; Takeuchi K; Obase K; Ito S
    FEMS Microbiol Ecol; 2015 Oct; 91(10):. PubMed ID: 26347080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic diversity of naturally established ectomycorrhizal fungi on Norway spruce seedlings under nursery conditions.
    Trocha LK; Rudawska M; Leski T; Dabert M
    Microb Ecol; 2006 Oct; 52(3):418-25. PubMed ID: 16826321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significant diversity and potential problems associated with inferring population structure within the Cenococcum geophilum species complex.
    Douhan GW; Huryn KL; Douhan LI
    Mycologia; 2007; 99(6):812-9. PubMed ID: 18333505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis.
    Doubková P; Sudová R
    Mycorrhiza; 2014 Apr; 24(3):209-17. PubMed ID: 24136374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking nickel-adaptive biomarkers in Pisolithus albus from New Caledonia using a transcriptomic approach.
    Majorel C; Hannibal L; Soupe ME; Carriconde F; Ducousso M; Lebrun M; Jourand P
    Mol Ecol; 2012 May; 21(9):2208-23. PubMed ID: 22429322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraspecific Variation in Nickel Tolerance and Hyperaccumulation among Serpentine and Limestone Populations of
    Pollard AJ; McCartha GL; Quintela-Sabarís C; Flynn TA; Sobczyk MK; Smith JAC
    Plants (Basel); 2021 Apr; 10(4):. PubMed ID: 33921686
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.