These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 17710637)

  • 1. Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure.
    Lemieux MJ
    Mol Membr Biol; 2007; 24(5-6):333-41. PubMed ID: 17710637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D model of the Escherichia coli multidrug transporter MdfA reveals an essential membrane-embedded positive charge.
    Sigal N; Vardy E; Molshanski-Mor S; Eitan A; Pilpel Y; Schuldiner S; Bibi E
    Biochemistry; 2005 Nov; 44(45):14870-80. PubMed ID: 16274234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure and mechanism of GlpT, the glycerol-3-phosphate transporter from E. coli.
    Lemieux MJ; Huang Y; Wang da N
    J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i43-6. PubMed ID: 16157640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helix dynamics in a membrane transport protein: comparative simulations of the glycerol-3-phosphate transporter and its constituent helices.
    D'Rozario RS; Sansom MS
    Mol Membr Biol; 2008 Sep; 25(6-7):571-83. PubMed ID: 19037818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A structural model for the osmosensor, transporter, and osmoregulator ProP of Escherichia coli.
    Wood JM; Culham DE; Hillar A; Vernikovska YI; Liu F; Boggs JM; Keates RA
    Biochemistry; 2005 Apr; 44(15):5634-46. PubMed ID: 15823022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli.
    Huang Y; Lemieux MJ; Song J; Auer M; Wang DN
    Science; 2003 Aug; 301(5633):616-20. PubMed ID: 12893936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactose permease as a paradigm for membrane transport proteins (Review).
    Abramson J; Iwata S; Kaback HR
    Mol Membr Biol; 2004; 21(4):227-36. PubMed ID: 15371012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily.
    Lemieux MJ; Huang Y; Wang DN
    Curr Opin Struct Biol; 2004 Aug; 14(4):405-12. PubMed ID: 15313233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nucleoside transport proteins, NupC and NupG, from Escherichia coli: specific structural motifs necessary for the binding of ligands.
    Patching SG; Baldwin SA; Baldwin AD; Young JD; Gallagher MP; Henderson PJ; Herbert RB
    Org Biomol Chem; 2005 Feb; 3(3):462-70. PubMed ID: 15678184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative stability of Major Facilitator Superfamily transport proteins.
    Harris NJ; Findlay HE; Sanders MR; Kedzierski M; Dos Santos Á; Booth PJ
    Eur Biophys J; 2017 Oct; 46(7):655-663. PubMed ID: 28116476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic cluster analysis and modeling of the human Rh protein three-dimensional structures.
    Callebaut I; Dulin F; Bertrand O; Ripoche P; Mouro I; Colin Y; Mornon JP; Cartron JP
    Transfus Clin Biol; 2006; 13(1-2):70-84. PubMed ID: 16584906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural modeling of dual-affinity purified Pho84 phosphate transporter.
    Lagerstedt JO; Voss JC; Wieslander A; Persson BL
    FEBS Lett; 2004 Dec; 578(3):262-8. PubMed ID: 15589830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.
    Tsigelny IF; Greenberg J; Kouznetsova V; Nigam SK
    J Bioinform Comput Biol; 2008 Oct; 6(5):885-904. PubMed ID: 18942157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structure of a bacterial oxalate transporter.
    Hirai T; Heymann JA; Shi D; Sarker R; Maloney PC; Subramaniam S
    Nat Struct Biol; 2002 Aug; 9(8):597-600. PubMed ID: 12118242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats.
    Radestock S; Forrest LR
    J Mol Biol; 2011 Apr; 407(5):698-715. PubMed ID: 21315728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and mechanism of the lactose permease.
    Kaback HR
    C R Biol; 2005 Jun; 328(6):557-67. PubMed ID: 15950162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural comparison of lactose permease and the glycerol-3-phosphate antiporter: members of the major facilitator superfamily.
    Abramson J; Kaback HR; Iwata S
    Curr Opin Struct Biol; 2004 Aug; 14(4):413-9. PubMed ID: 15313234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial homologs of eukaryotic membrane proteins: the 2-TM-GxN family of Mg(2+) transporters.
    Papp-Wallace KM; Maguire ME
    Mol Membr Biol; 2007; 24(5-6):351-6. PubMed ID: 17710639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural advances for the major facilitator superfamily (MFS) transporters.
    Yan N
    Trends Biochem Sci; 2013 Mar; 38(3):151-9. PubMed ID: 23403214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the E. coli peptide transporter YbgH.
    Zhao Y; Mao G; Liu M; Zhang L; Wang X; Zhang XC
    Structure; 2014 Aug; 22(8):1152-1160. PubMed ID: 25066136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.