These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 17710650)

  • 1. The conserved sequence NXX[S/T]HX[S/T]QDXXXT of the lactate/pyruvate:H(+) symporter subfamily defines the function of the substrate translocation pathway.
    Soares-Silva I; Paiva S; Diallinas G; Casal M
    Mol Membr Biol; 2007; 24(5-6):464-74. PubMed ID: 17710650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A substrate translocation trajectory in a cytoplasm-facing topological model of the monocarboxylate/H⁺ symporter Jen1p.
    Soares-Silva I; Sá-Pessoa J; Myrianthopoulos V; Mikros E; Casal M; Diallinas G
    Mol Microbiol; 2011 Aug; 81(3):805-17. PubMed ID: 21651629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional expression of the lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris.
    Soares-Silva I; Schuller D; Andrade RP; Baltazar F; Cássio F; Casal M
    Biochem J; 2003 Dec; 376(Pt 3):781-7. PubMed ID: 12962538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the carboxylate Jen transporters in fungi.
    Lodi T; Diffels J; Goffeau A; Baret PV
    FEMS Yeast Res; 2007 Aug; 7(5):646-56. PubMed ID: 17498214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nucleobase-ascorbate transporter (NAT) signature motif in UapA defines the function of the purine translocation pathway.
    Koukaki M; Vlanti A; Goudela S; Pantazopoulou A; Gioule H; Tournaviti S; Diallinas G
    J Mol Biol; 2005 Jul; 350(3):499-513. PubMed ID: 15953615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jen1p: a high affinity selenite transporter in yeast.
    McDermott JR; Rosen BP; Liu Z
    Mol Biol Cell; 2010 Nov; 21(22):3934-41. PubMed ID: 20861301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The loop between helix 4 and helix 5 in the monocarboxylate transporter MCT1 is important for substrate selection and protein stability.
    Galić S; Schneider HP; Bröer A; Deitmer JW; Bröer S
    Biochem J; 2003 Dec; 376(Pt 2):413-22. PubMed ID: 12946269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helix 8 and helix 10 are involved in substrate recognition in the rat monocarboxylate transporter MCT1.
    Rahman B; Schneider HP; Bröer A; Deitmer JW; Bröer S
    Biochemistry; 1999 Aug; 38(35):11577-84. PubMed ID: 10471310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate preference is altered by mutations in the fifth transmembrane domain of Ptr2p, the di/tri-peptide transporter of Saccharomyces cerevisiae.
    Hauser M; Kauffman S; Naider F; Becker JM
    Mol Membr Biol; 2005; 22(3):215-27. PubMed ID: 16096264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis and use of bile acid-MTS conjugates to probe the role of cysteines in the human apical sodium-dependent bile acid transporter (SLC10A2).
    Banerjee A; Ray A; Chang C; Swaan PW
    Biochemistry; 2005 Jun; 44(24):8908-17. PubMed ID: 15952798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling and mutational evidence identify the substrate binding site and functional elements in APC amino acid transporters.
    Vangelatos I; Vlachakis D; Sophianopoulou V; Diallinas G
    Mol Membr Biol; 2009 Aug; 26(5):356-70. PubMed ID: 19670073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transport of carboxylic acids and important role of the Jen1p transporter during the development of yeast colonies.
    Paiva S; Strachotová D; Kučerová H; Hlaváček O; Mota S; Casal M; Palková Z; Váchová L
    Biochem J; 2013 Sep; 454(3):551-8. PubMed ID: 23790185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane.
    Makuc J; Paiva S; Schauen M; Krämer R; André B; Casal M; Leão C; Boles E
    Yeast; 2001 Sep; 18(12):1131-43. PubMed ID: 11536335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Thr505 and Ser557 residues of the AGT1-encoded alpha-glucoside transporter are critical for maltotriose transport in Saccharomyces cerevisiae.
    Smit A; Moses SG; Pretorius IS; Cordero Otero RR
    J Appl Microbiol; 2008 Apr; 104(4):1103-11. PubMed ID: 18179544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation and functional analysis of the Aspergillus nidulans ammonium permease MeaA and evidence for interaction with itself and MepA.
    Monahan BJ; Unkles SE; Tsing I T; Kinghorn JR; Hynes MJ; Davis MA
    Fungal Genet Biol; 2002 Jun; 36(1):35-46. PubMed ID: 12051893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreases in activation energy and substrate affinity in cold-adapted A4-lactate dehydrogenase: evidence from the Antarctic notothenioid fish Chaenocephalus aceratus.
    Fields PA; Houseman DE
    Mol Biol Evol; 2004 Dec; 21(12):2246-55. PubMed ID: 15317880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural modeling identified the tRNA-binding domain of Utp8p, an essential nucleolar component of the nuclear tRNA export machinery of Saccharomyces cerevisiae.
    McGuire AT; Keates RA; Cook S; Mangroo D
    Biochem Cell Biol; 2009 Apr; 87(2):431-43. PubMed ID: 19370060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered substrate specificity in flavocytochrome b2: structural insights into the mechanism of L-lactate dehydrogenation.
    Mowat CG; Wehenkel A; Green AJ; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2004 Jul; 43(29):9519-26. PubMed ID: 15260495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of ethanol production from D-lactic acid by constitutive expression of lactate transporter Jen1p in Saccharomyces cerevisiae.
    Wakamatsu M; Tomitaka M; Tani T; Taguchi H; Kida K; Akamatsu T
    Biosci Biotechnol Biochem; 2013; 77(5):1114-6. PubMed ID: 23649240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Access of the substrate to the active site of squalene and oxidosqualene cyclases: comparative inhibition, site-directed mutagenesis and homology-modelling studies.
    Oliaro-Bosso S; Schulz-Gasch T; Taramino S; Scaldaferri M; Viola F; Balliano G
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1202-5. PubMed ID: 16246081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.