These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17711001)

  • 21. Effect of uncertainties in agricultural working schedules and Monte-Carlo evaluation of the model input in basin-scale runoff model analysis of herbicides.
    Matsui Y; Inoue T; Matsushita T; Yamada T; Yamamoto M; Sumigama Y
    Water Sci Technol; 2005; 51(3-4):329-37. PubMed ID: 15850206
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of pesticide concentrations found in rivers in the UK.
    Brown CD; Bellamy PH; Dubus IG
    Pest Manag Sci; 2002 Apr; 58(4):363-73. PubMed ID: 11975184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TurfPQ, a pesticide runoff model for turf.
    Haith DA
    J Environ Qual; 2001; 30(3):1033-9. PubMed ID: 11401250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pesticide runoff from greenhouse production.
    Roseth R; Haarstad K
    Water Sci Technol; 2010; 61(6):1373-81. PubMed ID: 20351415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models.
    Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A
    Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does sea-dyke construction affect the spatial distribution of pesticides in agricultural soils? - A case study from the Red River Delta, Vietnam.
    Braun G; Sebesvari Z; Braun M; Kruse J; Amelung W; An NT; Renaud FG
    Environ Pollut; 2018 Dec; 243(Pt B):890-899. PubMed ID: 30245451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pesticides in stream water within an agricultural catchment in southern Sweden, 1990-1996.
    Kreuger J
    Sci Total Environ; 1998 May; 216(3):227-51. PubMed ID: 9646531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review.
    Reichenberger S; Bach M; Skitschak A; Frede HG
    Sci Total Environ; 2007 Oct; 384(1-3):1-35. PubMed ID: 17588646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.
    Winchell MF; Peranginangin N; Srinivasan R; Chen W
    Integr Environ Assess Manag; 2018 May; 14(3):358-368. PubMed ID: 29193759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of the RICEWQ-VADOFT model for simulating the environmental fate of pretilachlor in rice paddies.
    Karpouzas DG; Ferrero A; Vidotto F; Capri E
    Environ Toxicol Chem; 2005 Apr; 24(4):1007-17. PubMed ID: 15839578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New insight into pesticide partition coefficient Kd for modelling pesticide fluvial transport: application to an agricultural catchment in south-western France.
    Boithias L; Sauvage S; Merlina G; Jean S; Probst JL; Sánchez Pérez JM
    Chemosphere; 2014 Mar; 99():134-42. PubMed ID: 24275149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling spray drift and runoff-related inputs of pesticides to receiving water.
    Zhang X; Luo Y; Goh KS
    Environ Pollut; 2018 Mar; 234():48-58. PubMed ID: 29156441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A pesticide surface water mobility index and its relationship with concentrations in agricultural drainage watersheds.
    Chen W; Hertl P; Chen S; Tierney D
    Environ Toxicol Chem; 2002 Feb; 21(2):298-308. PubMed ID: 11833798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed.
    Ouyang W; Cai G; Tysklind M; Yang W; Hao F; Liu H
    Water Res; 2017 Oct; 122():377-386. PubMed ID: 28622630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Erosion rills offset the efficacy of vegetated buffer strips to mitigate pesticide exposure in surface waters.
    Stehle S; Dabrowski JM; Bangert U; Schulz R
    Sci Total Environ; 2016 Mar; 545-546():171-83. PubMed ID: 26745303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution of agricultural pesticides in the freshwater environment of the Guayas river basin (Ecuador).
    Deknock A; De Troyer N; Houbraken M; Dominguez-Granda L; Nolivos I; Van Echelpoel W; Forio MAE; Spanoghe P; Goethals P
    Sci Total Environ; 2019 Jan; 646():996-1008. PubMed ID: 30235652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of pesticide fate parameters and their uncertainty on the selection of 'worst-case' scenarios of pesticide leaching to groundwater.
    Vanderborght J; Tiktak A; Boesten JJ; Vereecken H
    Pest Manag Sci; 2011 Mar; 67(3):294-306. PubMed ID: 21308955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimating pesticide runoff in small streams.
    Schriever CA; von der Ohe PC; Liess M
    Chemosphere; 2007 Aug; 68(11):2161-71. PubMed ID: 17395242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of Watershed-Scale Simulations of In-Stream Pesticide Concentrations from Off-Target Spray Drift.
    Winchell MF; Pai N; Brayden BH; Stone C; Whatling P; Hanzas JP; Stryker JJ
    J Environ Qual; 2018 Jan; 47(1):79-87. PubMed ID: 29415099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mass loading and partitioning of dioxins in irrigation runoff from Japanese paddy fields: combination usage of the CALUX assay with HRGC/HRMS.
    Kanematsu M; Shimizu Y; Sato K; Kim S; Suzuki T; Park B; Saino R; Nakamura M
    Chemosphere; 2009 Aug; 76(6):860-6. PubMed ID: 19443016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.