BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 1771167)

  • 1. Paradoxical effect of naloxone on the hemorrhagic hypotension in normotensive and spontaneously hypertensive Wistar-Kyoto rats.
    Budzikowski A; Loń S; Paczwa P
    Pol J Pharmacol Pharm; 1991; 43(1):79-82. PubMed ID: 1771167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of naloxone on the blood pressure response to tilting on spontaneously hypertensive rats].
    Seehrich HJ; Oehme P
    Biomed Biochim Acta; 1985; 44(10):1553-5. PubMed ID: 4084259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced venoconstrictor reserve in spontaneously hypertensive rats subjected to hemorrhagic stress.
    Burke MJ; Stekiel WJ; Lombard JH
    Circ Shock; 1984; 14(1):25-37. PubMed ID: 6488480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naloxone does not improve cardiovascular or blunt vasopressin responses in spontaneously hypertensive rats following graded hemorrhage.
    Rockhold RW; Crofton JT; Brooks DP; Share L
    Neuroendocrinology; 1986; 43(6):657-63. PubMed ID: 3020465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of carotid body volumes in normotensive Wistar rats (NWR), Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR).
    Habeck JO; Huckstorf C; Moritz V
    Biomed Biochim Acta; 1987; 46(12):907-10. PubMed ID: 3453071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gender differences in blood pressure and heart rate in spontaneously hypertensive and Wistar-Kyoto rats.
    Maris ME; Melchert RB; Joseph J; Kennedy RH
    Clin Exp Pharmacol Physiol; 2005; 32(1-2):35-9. PubMed ID: 15730432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressor responsiveness to vasopressin in spontaneously hypertensive rats.
    Stepniakowski K; Lapiński M; Januszewicz A; Noszczyk B; Szczepańska-Sadowska E
    Acta Physiol Pol; 1989; 40(2):171-82. PubMed ID: 2641416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the chronic hypotensive mechanism of action of ketanserin in spontaneously hypertensive and Wistar-Kyoto rats.
    Balasubramaniam G; Lee HS; Mah SC
    J Hypertens; 1994 Jan; 12(1):7-14. PubMed ID: 8157947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Blocking by naloxone of the antihypertensive effect of clonidine in hypertensive and normotensive animals].
    Val'dman AV; Medvedev OS; Rozhanskaia NI
    Biull Eksp Biol Med; 1981 Nov; 92(11):560-2. PubMed ID: 7317633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dipeptidyl peptidase iv inhibition on arterial blood pressure.
    Jackson EK; Dubinion JH; Mi Z
    Clin Exp Pharmacol Physiol; 2008 Jan; 35(1):29-34. PubMed ID: 18047624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of NG-nitro-L-arginine on pressor action of arginine vasopressin in normotensive (WKY) and spontaneously hypertensive (SHR) rats.
    Styś T; Szczepańska-Sadowska E
    J Physiol Pharmacol; 1994 Jun; 45(2):231-40. PubMed ID: 7949233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential blood pressure responses to intracisternal clonidine, alpha-methyldopa, and 6-hydroxydopamine in conscious normotensive and spontaneously hypertensive rats.
    Head GA; de Jong W
    J Cardiovasc Pharmacol; 1986; 8(4):735-42. PubMed ID: 2427812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the relationship between clonidine hypotension and brain beta-endorphin in the spontaneously hypertensive rat: studies with alpha adrenergic and opiate blockers.
    Mastrianni JA; Ingenito AJ
    J Pharmacol Exp Ther; 1987 Jul; 242(1):378-87. PubMed ID: 3039113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A-4, a tertiary amine analog of HC-3, lowers arterial pressure in spontaneously hypertensive rats.
    Ozkutlu U; Shaffer RA; Lewis SJ; Long JP
    J Pharmacol Exp Ther; 1996 Jun; 277(3):1352-8. PubMed ID: 8667197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible role of an endogenous opiate in the cardiovascular effects of central alpha adrenoceptor stimulation in spontaneously hypertensive rats.
    Farsang C; Ramirez-Gonzalez MD; Mucci L; Kunos G
    J Pharmacol Exp Ther; 1980 Jul; 214(1):203-8. PubMed ID: 6248627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood pressure responses to substances interfering with nitric oxide formation, cyclooxygenase and converting enzyme activities and vasopressin V1 receptors blockade in conscious spontaneously hypertensive and normotensive rats.
    Januszewicz A; Lapiński M; Styś T; Styś A; Loń S
    Pol J Pharmacol; 1994; 46(3):153-61. PubMed ID: 8000447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Naloxone and haemorrhagic hypotension in rats. Evidence against sympathetic nervous system as the primary mediator of improved cardiovascular haemodynamics.
    Månsson J; Skoog P; Thorén P
    Acta Physiol Scand; 1986 Jun; 127(2):155-9. PubMed ID: 3014821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased hypotensive responsiveness to nitric oxide donor S-nitroso N-acetyl-DL-penicillamine (SNAP) in spontaneously hypertensive (SHR) rats.
    Styś T; Styś A; Paczwa P; Szczepańska-Sadowska E; Lipkowski AW
    J Physiol Pharmacol; 1998 Mar; 49(1):37-49. PubMed ID: 9594409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Age-related blood pressure reaction in spontaneously hypertensive rats in passive orthostasis].
    Seehrich HJ; Oehme P
    Biomed Biochim Acta; 1983; 42(1):109-12. PubMed ID: 6882401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Very low frequency blood pressure variability is modulated by myogenic vascular function and is reduced in stroke-prone rats.
    Stauss HM; Petitto CE; Rotella DL; Wong BJ; Sheriff DD
    J Hypertens; 2008 Jun; 26(6):1127-37. PubMed ID: 18475150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.