These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1771183)

  • 1. The influence of model parameter values on the prediction of skin surface temperature: II. Contact problems.
    Cui ZF; Barbenel JC
    Phys Med Biol; 1991 Dec; 36(12):1607-20. PubMed ID: 1771183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of model parameter values on the prediction of skin surface temperature: I. Resting and surface insulation.
    Cui ZF; Barbenel JC
    Phys Med Biol; 1990 Dec; 35(12):1683-97. PubMed ID: 2284337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion.
    Gowrishankar TR; Stewart DA; Martin GT; Weaver JC
    Biomed Eng Online; 2004 Nov; 3(1):42. PubMed ID: 15548324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling transient heat transfer through the skin and a contact material.
    Hodson DA; Barbenel JC; Eason G
    Phys Med Biol; 1989 Oct; 34(10):1493-507. PubMed ID: 2813515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tissue heat transfer model for relating dynamic skin temperature changes to physiological parameters.
    Wilson SB; Spence VA
    Phys Med Biol; 1988 Aug; 33(8):895-912. PubMed ID: 3186787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The exact analytical solution of the dual-phase-lag two-temperature bioheat transfer of a skin tissue subjected to constant heat flux.
    Youssef HM; Alghamdi NA
    Sci Rep; 2020 Sep; 10(1):15946. PubMed ID: 32994496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies.
    Deng ZS; Liu J
    J Biomech Eng; 2002 Dec; 124(6):638-49. PubMed ID: 12596630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface.
    Shih TC; Yuan P; Lin WL; Kou HS
    Med Eng Phys; 2007 Nov; 29(9):946-53. PubMed ID: 17137825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of blood flow and millimeter wave exposure on skin temperature in different thermal models.
    Alekseev SI; Ziskin MC
    Bioelectromagnetics; 2009 Jan; 30(1):52-8. PubMed ID: 18780297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.
    Kanezaki A; Hirata A; Watanabe S; Shirai H
    Phys Med Biol; 2010 Aug; 55(16):4647-59. PubMed ID: 20671356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling transient heat transfer through the skin and superficial tissues--1: Surface insulation.
    Hodson DA; Eason G; Barbenel JC
    J Biomech Eng; 1986 May; 108(2):183-8. PubMed ID: 3724107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy Balance Approach to Study the Role of Perspiration in Heat Distribution of Human Skin.
    Mir A; Almanjahie IM; Dar JG
    Comput Math Methods Med; 2020; 2020():3154908. PubMed ID: 32211053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of skin burn injury. Part 2: Parametric and sensitivity analysis.
    Ng EY; Chua LT
    Proc Inst Mech Eng H; 2002; 216(3):171-83. PubMed ID: 12137284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of blood flow, curved boundary and environmental conditions on temperature distribution in a two dimensional model of human skin and subcutaneous tissues.
    Pal DS; Pal S
    J Math Biol; 1993; 32(1):17-32. PubMed ID: 8113632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of surface heat flux and temperature distributions in a multilayer tissue based on the hyperbolic model of heat conduction.
    Lee HL; Chen WL; Chang WJ; Yang YC
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1525-34. PubMed ID: 24946013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat transfer analysis of skin during thermal therapy using thermal wave equation.
    Kashcooli M; Salimpour MR; Shirani E
    J Therm Biol; 2017 Feb; 64():7-18. PubMed ID: 28166948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional model on thermal response of skin subject to laser heating.
    Shen W; Zhang J; Yang F
    Comput Methods Biomech Biomed Engin; 2005 Apr; 8(2):115-25. PubMed ID: 16154875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element model to study temperature distribution in skin and deep tissues of human limbs.
    Agrawal M; Pardasani KR
    J Therm Biol; 2016 Dec; 62(Pt B):98-105. PubMed ID: 27888936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics.
    Deng ZS; Liu J
    Comput Biol Med; 2004 Sep; 34(6):495-521. PubMed ID: 15265721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of burn injuries with temperature-dependent thermal conductivity and metabolism under different surface heat sources.
    Ansari F; Chaudhary RK; Singh J
    J Therm Biol; 2023 Aug; 116():103656. PubMed ID: 37481935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.