BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 17712349)

  • 1. Early auditory sensory processing deficits in mouse mutants with reduced NMDA receptor function.
    Bickel S; Lipp HP; Umbricht D
    Neuropsychopharmacology; 2008 Jun; 33(7):1680-9. PubMed ID: 17712349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blast Exposure Impairs Sensory Gating: Evidence from Measures of Acoustic Startle and Auditory Event-Related Potentials.
    Papesh MA; Elliott JE; Callahan ML; Storzbach D; Lim MM; Gallun FJ
    J Neurotrauma; 2019 Mar; 36(5):702-712. PubMed ID: 30113267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive analysis of auditory event-related potentials and network oscillations in an NMDA receptor antagonist mouse model using a novel wireless recording technology.
    Schuelert N; Dorner-Ciossek C; Brendel M; Rosenbrock H
    Physiol Rep; 2018 Aug; 6(16):e13782. PubMed ID: 30155997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prenatal IV nicotine exposure produces a sex difference in sensorimotor gating of the auditory startle reflex in adult rats.
    Lacy RT; Mactutus CF; Harrod SB
    Int J Dev Neurosci; 2011 Apr; 29(2):153-61. PubMed ID: 21145386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic prepulse inhibition in male and female prairie voles: Implications for models of neuropsychiatric illness.
    Jones CE; Navis TM; Teutsch P; Opel RA; Lim MM
    Behav Brain Res; 2019 Mar; 360():298-302. PubMed ID: 30550951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Habituation and sensitization of acoustic startle: opposite influences of dopamine D1 and D2-family receptors.
    Halberstadt AL; Geyer MA
    Neurobiol Learn Mem; 2009 Sep; 92(2):243-8. PubMed ID: 18644244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of sensory modality in prepulse inhibition: An ontogenetic study.
    Moran LM; Hord LL; Booze RM; Harrod SB; Mactutus CF
    Dev Psychobiol; 2016 Mar; 58(2):211-22. PubMed ID: 26415825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistent gating deficit and increased sensitivity to NMDA receptor antagonism after puberty in a new mouse model of the human 22q11.2 microdeletion syndrome: a study in male mice.
    Didriksen M; Fejgin K; Nilsson SR; Birknow MR; Grayton HM; Larsen PH; Lauridsen JB; Nielsen V; Celada P; Santana N; Kallunki P; Christensen KV; Werge TM; Stensbøl TB; Egebjerg J; Gastambide F; Artigas F; Bastlund JF; Nielsen J
    J Psychiatry Neurosci; 2017 Jan; 42(1):48-58. PubMed ID: 27391101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a modified prepulse inhibition paradigm to assess complex auditory discrimination in rodents.
    Fitch RH; Threlkeld SW; McClure MM; Peiffer AM
    Brain Res Bull; 2008 May; 76(1-2):1-7. PubMed ID: 18395604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the role of Slc10a4 in auditory processing and sensory motor gating: Implications for neuropsychiatric disorders?
    Ciralli B; Malfatti T; Hilscher MM; Leao RN; Cederroth CR; Leao KE; Kullander K
    Prog Neuropsychopharmacol Biol Psychiatry; 2024 Apr; 131():110930. PubMed ID: 38160852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prepulse inhibition in HIV-1 gp120 transgenic mice after withdrawal from chronic methamphetamine.
    Henry BL; Geyer MA; Buell MR; Perry W; Young JW; Minassian A;
    Behav Pharmacol; 2014 Feb; 25(1):12-22. PubMed ID: 24281153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single unit and population responses during inhibitory gating of striatal activity in freely moving rats.
    Cromwell HC; Klein A; Mears RP
    Neuroscience; 2007 Apr; 146(1):69-85. PubMed ID: 17321056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early postnatal development of sensory gating.
    Kisley MA; Polk SD; Ross RG; Levisohn PM; Freedman R
    Neuroreport; 2003 Apr; 14(5):693-7. PubMed ID: 12692465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Working memory and processing speed abilities are related to habituation and change detection in school-aged children: An ERP study.
    Charlebois-Poirier AR; Lalancette E; Agbogba K; Fauteux AA; Knoth IS; Lippé S
    Neuropsychologia; 2023 Aug; 187():108616. PubMed ID: 37339690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic startle modification as a tool for evaluating auditory function of the mouse: Progress, pitfalls, and potential.
    Lauer AM; Behrens D; Klump G
    Neurosci Biobehav Rev; 2017 Jun; 77():194-208. PubMed ID: 28327385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise-Induced Hypersensitization of the Acoustic Startle Response in Larval Zebrafish.
    Bhandiwad AA; Raible DW; Rubel EW; Sisneros JA
    J Assoc Res Otolaryngol; 2018 Dec; 19(6):741-752. PubMed ID: 30191425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved approach to separating startle data from noise.
    Grimsley CA; Longenecker RJ; Rosen MJ; Young JW; Grimsley JM; Galazyuk AV
    J Neurosci Methods; 2015 Sep; 253():206-17. PubMed ID: 26165984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of non-REM and REM sleep on sensory gating in rats.
    van Luijtelaar EL; Miller CA; Coenen AM; Drinkenburg WH; Ellenbroek BA
    Acta Neurobiol Exp (Wars); 1998; 58(4):263-70. PubMed ID: 9949552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age and sex effects on paired-pulse suppression and prepulse inhibition of auditory evoked potentials.
    Inui K; Takeuchi N; Borgil B; Shingaki M; Sugiyama S; Taniguchi T; Nishihara M; Watanabe T; Suzuki D; Motomura E; Kida T
    Front Neurosci; 2024; 18():1378619. PubMed ID: 38655109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early auditory processing dysfunction in schizophrenia: Mechanisms and implications.
    Dondé C; Kantrowitz JT; Medalia A; Saperstein AM; Balla A; Sehatpour P; Martinez A; O'Connell MN; Javitt DC
    Neurosci Biobehav Rev; 2023 May; 148():105098. PubMed ID: 36796472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.