These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 17712380)

  • 1. Stimulated photorefractive backscatter leading to six-wave mixing and phase conjugation in iron-doped lithium niobate.
    Saleh MA; Banerjee PP; Carns J; Cook G; Evans DR
    Appl Opt; 2007 Aug; 46(24):6151-60. PubMed ID: 17712380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-frequency phase conjugation wave generation with the high-order nonlinear effect by nondegenerate six-wave mixing in photorefractive Fe:LiNbO(3).
    Bao C; Zhang J; Wang S
    Appl Opt; 1988 Nov; 27(21):4572-7. PubMed ID: 20539610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-pumped phase-conjugate interferometer with a photorefractive iron-doped lithium-niobate crystal.
    Jayanth P; Mohan RK; Subramanian CK
    Appl Opt; 1996 Jul; 35(19):3534-9. PubMed ID: 21102745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency-varied conjugation wave generation via nondegenerate four-wave mixing in Fe:LiNbO(3) crystal.
    Bao C; Zhang J; Wang S
    Appl Opt; 1988 Feb; 27(3):652-4. PubMed ID: 20523654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Color image phase conjugation in photorefractive crystal Fe:LiNbO(3).
    Bao C; Zhang J
    Appl Opt; 1990 Jun; 29(18):2707-10. PubMed ID: 20567318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-beam cleanup using photorefractive two-wave mixing and optical phase conjugation.
    Chiou AE; Yeh P
    Opt Lett; 1986 Jul; 11(7):461-3. PubMed ID: 19730664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave mixing and beam profile control in a photorefractive waveguide.
    Yu W; Królikowski W; Luther-Davies B; Webster M; Austin M
    Opt Lett; 1995 Mar; 20(6):563-5. PubMed ID: 19859256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-pumped phase conjugation and four-wave mixing in 0 degrees - and 45 degrees -cut n-type BaTiO(3):Co.
    Garrett MH; Chang JY; Jenssen HP; Warde C
    Opt Lett; 1993 Mar; 18(6):405-7. PubMed ID: 19802150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of magnetic field on terahertz wave generation in photorefractive periodically poled lithium niobate crystal.
    Li G; Li D; Ma G; Liu W; Tang SH
    Appl Opt; 2011 Mar; 50(8):1082-6. PubMed ID: 21394179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive Bi(12)SiO(20) crystals.
    Rajbenbach H; Huignard JP; Refrégier P
    Opt Lett; 1984 Dec; 9(12):558-60. PubMed ID: 19721667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-pumped phase-conjugation properties of cerium-doped BaTiO(3) crystals in the near infrared.
    Dou SX; Lian Y; Gao H; Zhu Y; Wu X; Yang C; Ye P
    Appl Opt; 1995 Apr; 34(12):2024-32. PubMed ID: 21037749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Photorefraction in Vanadium-Doped Lithium Niobate through Iron and Zirconium Co-Doping.
    Saeed S; Liu H; Xue L; Zheng D; Liu S; Chen S; Kong Y; Rupp R; Xu J
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photorefractive properties of iron-doped stoichiometric lithium niobate.
    Furukawa Y; Kitamura K; Ji Y; Montemezzani G; Zgonik M; Medrano C; Günter P
    Opt Lett; 1997 Apr; 22(8):501-3. PubMed ID: 18183247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-frequency-shifted, high-fidelity phase conjugation with aberrated pump waves by Brillouin-enhanced four-wave mixing.
    Skeldon MD; Narum P; Boyd RW
    Opt Lett; 1987 May; 12(5):343-5. PubMed ID: 19738885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves.
    Suizu K; Suzuki Y; Sasaki Y; Ito H; Avetisyan Y
    Opt Lett; 2006 Apr; 31(7):957-9. PubMed ID: 16599224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase shifts of photorefractive gratings and phase-conjugate waves.
    McMichael I; Yeh P
    Opt Lett; 1987 Jan; 12(1):48-50. PubMed ID: 19738789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photorefractive effects in tantalum-doped potassium niobate.
    Clement AE; Gilbreath GC
    Appl Opt; 1991 Jun; 30(18):2458-64. PubMed ID: 20700232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate.
    Guha S; Barnes JO; Gonzalez LP
    Opt Lett; 2014 Sep; 39(17):5018-21. PubMed ID: 25166063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffraction properties of transmission photorefractive volume gratings in a cerium-doped potassium sodium strontium barium niobate crystal.
    Liang BL; Wang ZQ; Mu GG; Guan JH; Cartwright CM
    Appl Opt; 1999 Sep; 38(26):5552-5. PubMed ID: 18324065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous occurrence of beam deflection, holographic recording, and self-interference in one lithium niobate crystal.
    Qiao H; Xu J; Liu S; Zhang X; Sun Q; Huang H; Zhang G
    Opt Lett; 2001 Aug; 26(16):1221-3. PubMed ID: 18049566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.