These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 17712383)

  • 1. Comparison between a model-based and a conventional pyramid sensor reconstructor.
    Korkiakoski V; Vérinaud C; Le Louarn M; Conan R
    Appl Opt; 2007 Aug; 46(24):6176-84. PubMed ID: 17712383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor.
    Shatokhina I; Obereder A; Rosensteiner M; Ramlau R
    Appl Opt; 2013 Apr; 52(12):2640-52. PubMed ID: 23669672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal adaptive optics imaging with a pyramid wavefront sensor.
    Brunner E; Shatokhina J; Shirazi MF; Drexler W; Leitgeb R; Pollreisz A; Hitzenberger CK; Ramlau R; Pircher M
    Biomed Opt Express; 2021 Oct; 12(10):5969-5990. PubMed ID: 34745716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convolution- and Fourier-transform-based reconstructors for pyramid wavefront sensor.
    Shatokhina I; Ramlau R
    Appl Opt; 2017 Aug; 56(22):6381-6390. PubMed ID: 29047838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the performance of a pyramid wavefront sensor with modal sensitivity compensation.
    Korkiakoski V; Vérinaud C; Le Louarn M
    Appl Opt; 2008 Jan; 47(1):79-87. PubMed ID: 18157280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation-nonmodulation pyramid wavefront sensor with direct gradient reconstruction algorithm on the closed-loop adaptive optics system.
    Wang S; Wei K; Zheng W
    Opt Express; 2018 Aug; 26(16):20952-20964. PubMed ID: 30119402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory demonstrations on a pyramid wavefront sensor without modulation for closed-loop adaptive optics system.
    Wang S; Rao C; Xian H; Zhang J; Wang J; Liu Z
    Opt Express; 2011 Apr; 19(9):8135-50. PubMed ID: 21643064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear wavefront reconstruction methods for pyramid sensors using Landweber and Landweber-Kaczmarz iterations.
    Hutterer V; Ramlau R
    Appl Opt; 2018 Oct; 57(30):8790-8804. PubMed ID: 30461858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory demonstration of accurate and efficient nanometer-level wavefront control for extreme adaptive optics.
    Poyneer LA; Dillon D; Thomas S; Macintosh BA
    Appl Opt; 2008 Mar; 47(9):1317-26. PubMed ID: 18709080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor.
    Chamot SR; Dainty C; Esposito S
    Opt Express; 2006 Jan; 14(2):518-26. PubMed ID: 19503366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital pyramid wavefront sensor with tunable modulation.
    Akondi V; Castillo S; Vohnsen B
    Opt Express; 2013 Jul; 21(15):18261-72. PubMed ID: 23938697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time delay compensation method for tip-tilt control in adaptive optics system.
    Wang C; Hu L; Wang Y; Wang S; Mu Q; Li D; Cao Z; Yang C; Xu H; Xuan L
    Appl Opt; 2015 Apr; 54(11):3383-8. PubMed ID: 25967327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation around a pyramid theme: optical recombination and optimal use of photons.
    Fauvarque O; Neichel B; Fusco T; Sauvage JF
    Opt Lett; 2015 Aug; 40(15):3528-31. PubMed ID: 26258349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration of quasi-static aberrations in high-contrast astronomical adaptive optics with a pupil-modulated point-diffraction interferometer.
    Dubost N; Bharmal NA; Myers RM
    Opt Express; 2018 Apr; 26(9):11068-11083. PubMed ID: 29716034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calibration and testing with real turbulence of a pyramid sensor employing static modulation.
    LeDue J; Jolissaint L; Véran JP; Bradley C
    Opt Express; 2009 Apr; 17(9):7186-95. PubMed ID: 19399094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear wavefront reconstruction with convolutional neural networks for Fourier-based wavefront sensors.
    Landman R; Haffert SY
    Opt Express; 2020 May; 28(11):16644-16657. PubMed ID: 32549483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tomography approach for multi-object adaptive optics.
    Vidal F; Gendron E; Rousset G
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A253-64. PubMed ID: 21045886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of CMOS Pixel and Electronic Circuitry in the Performance of a Hartmann-Shack Wavefront Sensor.
    Abecassis ÚV; de Lima Monteiro DW; Salles LP; de Moraes Cruz CA; Agra Belmonte PN
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.
    Steinbock MJ; Hyde MW; Schmidt JD
    Appl Opt; 2014 Jun; 53(18):3821-31. PubMed ID: 24979411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive optics implementation with a Fourier reconstructor.
    Glazer O; Ribak EN; Mirkin L
    Appl Opt; 2007 Feb; 46(4):574-80. PubMed ID: 17230252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.