These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 17712425)

  • 1. Evidence for a minimal eukaryotic phosphoproteome?
    Diks SH; Parikh K; van der Sijde M; Joore J; Ritsema T; Peppelenbosch MP
    PLoS One; 2007 Aug; 2(8):e777. PubMed ID: 17712425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global analysis of protein phosphorylation in yeast.
    Ptacek J; Devgan G; Michaud G; Zhu H; Zhu X; Fasolo J; Guo H; Jona G; Breitkreutz A; Sopko R; McCartney RR; Schmidt MC; Rachidi N; Lee SJ; Mah AS; Meng L; Stark MJ; Stern DF; De Virgilio C; Tyers M; Andrews B; Gerstein M; Schweitzer B; Predki PF; Snyder M
    Nature; 2005 Dec; 438(7068):679-84. PubMed ID: 16319894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale proteomics analysis of the human kinome.
    Oppermann FS; Gnad F; Olsen JV; Hornberger R; Greff Z; Kéri G; Mann M; Daub H
    Mol Cell Proteomics; 2009 Jul; 8(7):1751-64. PubMed ID: 19369195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic analysis of protein phosphorylation networks from phosphoproteomic data.
    Song C; Ye M; Liu Z; Cheng H; Jiang X; Han G; Songyang Z; Tan Y; Wang H; Ren J; Xue Y; Zou H
    Mol Cell Proteomics; 2012 Oct; 11(10):1070-83. PubMed ID: 22798277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein kinases associated with the yeast phosphoproteome.
    Brinkworth RI; Munn AL; Kobe B
    BMC Bioinformatics; 2006 Jan; 7():47. PubMed ID: 16445868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis.
    de la Fuente van Bentem S; Anrather D; Dohnal I; Roitinger E; Csaszar E; Joore J; Buijnink J; Carreri A; Forzani C; Lorkovic ZJ; Barta A; Lecourieux D; Verhounig A; Jonak C; Hirt H
    J Proteome Res; 2008 Jun; 7(6):2458-70. PubMed ID: 18433157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Proteomics Reveals the Unicellular Roots of Animal Phosphosignaling and Cell Differentiation.
    Sebé-Pedrós A; Peña MI; Capella-Gutiérrez S; Antó M; Gabaldón T; Ruiz-Trillo I; Sabidó E
    Dev Cell; 2016 Oct; 39(2):186-197. PubMed ID: 27746046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pin1: Intimate involvement with the regulatory protein kinase networks in the global phosphorylation landscape.
    Litchfield DW; Shilton BH; Brandl CJ; Gyenis L
    Biochim Biophys Acta; 2015 Oct; 1850(10):2077-86. PubMed ID: 25766872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear phosphoproteome of developing chickpea seedlings (Cicer arietinum L.) and protein-kinase interaction network.
    Kumar R; Kumar A; Subba P; Gayali S; Barua P; Chakraborty S; Chakraborty N
    J Proteomics; 2014 Jun; 105():58-73. PubMed ID: 24747304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From the research laboratory to the database: the Caenorhabditis elegans kinome in UniProtKB.
    Zaru R; Magrane M; O'Donovan C;
    Biochem J; 2017 Feb; 474(4):493-515. PubMed ID: 28159896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness.
    Nett IR; Martin DM; Miranda-Saavedra D; Lamont D; Barber JD; Mehlert A; Ferguson MA
    Mol Cell Proteomics; 2009 Jul; 8(7):1527-38. PubMed ID: 19346560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening.
    Mah AS; Elia AE; Devgan G; Ptacek J; Schutkowski M; Snyder M; Yaffe MB; Deshaies RJ
    BMC Biochem; 2005 Oct; 6():22. PubMed ID: 16242037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validity of the cell-extracted proteome as a substrate pool for exploring phosphorylation motifs of kinases.
    Niinae T; Sugiyama N; Ishihama Y
    Genes Cells; 2023 Oct; 28(10):727-735. PubMed ID: 37658684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of protein kinase substrate recognition at the active site.
    Bradley D; Beltrao P
    PLoS Biol; 2019 Jun; 17(6):e3000341. PubMed ID: 31233486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide arrays for kinome analysis: new opportunities and remaining challenges.
    Arsenault R; Griebel P; Napper S
    Proteomics; 2011 Dec; 11(24):4595-609. PubMed ID: 22002874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technological advances for interrogating the human kinome.
    Baharani A; Trost B; Kusalik A; Napper S
    Biochem Soc Trans; 2017 Feb; 45(1):65-77. PubMed ID: 28202660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes.
    Adam K; Hunter T
    Lab Invest; 2018 Feb; 98(2):233-247. PubMed ID: 29058706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Illuminating the dark phosphoproteome.
    Needham EJ; Parker BL; Burykin T; James DE; Humphrey SJ
    Sci Signal; 2019 Jan; 12(565):. PubMed ID: 30670635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation by LAMMER protein kinases: determination of a consensus site, identification of in vitro substrates, and implications for substrate preferences.
    Nikolakaki E; Du C; Lai J; Giannakouros T; Cantley L; Rabinow L
    Biochemistry; 2002 Feb; 41(6):2055-66. PubMed ID: 11827553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinome profiling using peptide arrays in eukaryotic cells.
    Parikh K; Peppelenbosch MP; Ritsema T
    Methods Mol Biol; 2009; 527():269-80, x. PubMed ID: 19241020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.