These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 17712455)

  • 1. A unified scheme for the calculation of differentiated and undifferentiated molecular integrals over solid-harmonic Gaussians.
    Reine S; Tellgren E; Helgaker T
    Phys Chem Chem Phys; 2007 Sep; 9(34):4771-9. PubMed ID: 17712455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals.
    Kurashige Y; Nakajima T; Hirao K
    J Chem Phys; 2007 Apr; 126(14):144106. PubMed ID: 17444700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient evaluation of the geometrical first derivatives of three-center Coulomb integrals.
    Samu G; Kállay M
    J Chem Phys; 2018 Sep; 149(12):124101. PubMed ID: 30278674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of multicenter one-electron integrals of noninteger u screened Coulomb type potentials and their derivatives over noninteger n Slater orbitals.
    Guseinov II; Mamedov BA
    J Chem Phys; 2004 Jul; 121(4):1649-54. PubMed ID: 15260714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals.
    Golze D; Benedikter N; Iannuzzi M; Wilhelm J; Hutter J
    J Chem Phys; 2017 Jan; 146(3):034105. PubMed ID: 28109230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical calculations of molecular integrals for multielectron R-matrix methods.
    Wong BM; Altunata SN; Field RW
    J Chem Phys; 2006 Jan; 124(1):14106. PubMed ID: 16409023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient density-functional-theory force evaluation for large molecular systems.
    Reine S; Krapp A; Iozzi MF; Bakken V; Helgaker T; Pawłowski F; Sałek P
    J Chem Phys; 2010 Jul; 133(4):044102. PubMed ID: 20687628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half-numerical evaluation of pseudopotential integrals.
    Flores-Moreno R; Alvarez-Mendez RJ; Vela A; Köster AM
    J Comput Chem; 2006 Jul; 27(9):1009-19. PubMed ID: 16628539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of molecular integrals over Slater-type orbitals using recurrence relations for overlap integrals and basic one-center Coulomb integrals.
    Guseinov I; Mamedov B; Rzaeva A
    J Mol Model; 2002 Apr; 8(4):145-9. PubMed ID: 12111393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contracted auxiliary Gaussian basis integral and derivative evaluation.
    Giese TJ; York DM
    J Chem Phys; 2008 Feb; 128(6):064104. PubMed ID: 18282025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analytical derivative procedure for the calculation of vibrational Raman optical activity spectra.
    Liégeois V; Ruud K; Champagne B
    J Chem Phys; 2007 Nov; 127(20):204105. PubMed ID: 18052417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of two-center Coulomb and hybrid integrals over complete orthonormal sets of Ψα-ETO using auxiliary functions.
    Guseinov II; Sahin E
    J Mol Model; 2011 Apr; 17(4):851-6. PubMed ID: 20577890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of the algorithms for the calculation of Slater molecular integrals in polyatomic molecules.
    Fernández Rico J; López R; Ema I; Ramírez G
    J Comput Chem; 2004 Dec; 25(16):1987-94. PubMed ID: 15473010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The limits of local correlation theory: electronic delocalization and chemically smooth potential energy surfaces.
    Subotnik JE; Sodt A; Head-Gordon M
    J Chem Phys; 2008 Jan; 128(3):034103. PubMed ID: 18205484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple algebraic derivation of the Obara-Saika scheme for general two-electron interaction potentials.
    Ahlrichs R
    Phys Chem Chem Phys; 2006 Jul; 8(26):3072-7. PubMed ID: 16804606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical evaluation of electron repulsion integrals for pseudoatomic orbitals and their derivatives.
    Toyoda M; Ozaki T
    J Chem Phys; 2009 Mar; 130(12):124114. PubMed ID: 19334815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonperturbative ab initio calculations in strong magnetic fields using London orbitals.
    Tellgren EI; Soncini A; Helgaker T
    J Chem Phys; 2008 Oct; 129(15):154114. PubMed ID: 19045183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accompanying coordinate expansion formulas derived with the solid harmonic gradient.
    Ishida K
    J Comput Chem; 2002 Feb; 23(3):378-93. PubMed ID: 11908501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reexamination of the calculation of two-center, two-electron integrals over Slater-type orbitals. I. Coulomb and hybrid integrals.
    Lesiuk M; Moszynski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063318. PubMed ID: 25615232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slater-type geminals in explicitly-correlated perturbation theory: application to n-alkanols and analysis of errors and basis-set requirements.
    Höfener S; Bischoff FA; Glöss A; Klopper W
    Phys Chem Chem Phys; 2008 Jun; 10(23):3390-9. PubMed ID: 18535722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.