These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 17712521)
1. Confined ferrofluid droplet in crossed magnetic fields. Jackson DP; Miranda JA Eur Phys J E Soft Matter; 2007 Aug; 23(4):389-96. PubMed ID: 17712521 [TBL] [Abstract][Full Text] [Related]
2. Fingering patterns in the lifting flow of a confined miscible ferrofluid. Chen CY; Wu SY; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036310. PubMed ID: 17500794 [TBL] [Abstract][Full Text] [Related]
3. Shape instabilities in confined ferrofluids under crossed magnetic fields. Oliveira RM; Coutinho ÍM; Anjos PHA; Miranda JA Phys Rev E; 2021 Dec; 104(6-2):065113. PubMed ID: 35030845 [TBL] [Abstract][Full Text] [Related]
4. Controlling fingering instabilities in rotating ferrofluids. Jackson DP; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):017301. PubMed ID: 12636637 [TBL] [Abstract][Full Text] [Related]
5. Ferrofluid annulus in crossed magnetic fields. Livera POS; Anjos PHA; Miranda JA Phys Rev E; 2022 Apr; 105(4-2):045106. PubMed ID: 35590587 [TBL] [Abstract][Full Text] [Related]
6. Ferrofluid patterns in a radial magnetic field: linear stability, nonlinear dynamics, and exact solutions. Oliveira RM; Miranda JA; Leandro ES Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016304. PubMed ID: 18351931 [TBL] [Abstract][Full Text] [Related]
7. Stationary shapes of confined rotating magnetic liquid droplets. Lira SA; Miranda JA; Oliveira RM Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036318. PubMed ID: 21230182 [TBL] [Abstract][Full Text] [Related]
8. Tuning a magnetic field to generate spinning ferrofluid droplets with controllable speed via nonlinear periodic interfacial waves. Yu Z; Christov IC Phys Rev E; 2021 Jan; 103(1-1):013103. PubMed ID: 33601568 [TBL] [Abstract][Full Text] [Related]
9. Time-dependent gap Hele-Shaw cell with a ferrofluid: evidence for an interfacial singularity inhibition by a magnetic field. Miranda JA; Oliveira RM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066312. PubMed ID: 15244731 [TBL] [Abstract][Full Text] [Related]
10. Azimuthal field instability in a confined ferrofluid. Dias EO; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023020. PubMed ID: 25768610 [TBL] [Abstract][Full Text] [Related]
11. Rotating hele-shaw cells with ferrofluids. Miranda JA Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt B):2985-8. PubMed ID: 11088789 [TBL] [Abstract][Full Text] [Related]
12. Field-induced patterns in confined magnetorheological fluids. Lira SA; Miranda JA; Oliveira RM Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046303. PubMed ID: 20481823 [TBL] [Abstract][Full Text] [Related]
13. Numerical study of miscible fingering in a time-dependent gap Hele-Shaw cell. Chen CY; Chen CH; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056304. PubMed ID: 16089646 [TBL] [Abstract][Full Text] [Related]
14. Weakly nonlinear study of normal-field instability in confined ferrofluids. Lira SA; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016303. PubMed ID: 21867300 [TBL] [Abstract][Full Text] [Related]
15. Effects of magnetic field on the spreading dynamics of an impinging ferrofluid droplet. Ahmed A; Qureshi AJ; Fleck BA; Waghmare PR J Colloid Interface Sci; 2018 Dec; 532():309-320. PubMed ID: 30096525 [TBL] [Abstract][Full Text] [Related]
16. Delayed Hopf bifurcation and control of a ferrofluid interface via a time-dependent magnetic field. Yu Z; Christov IC Phys Rev E; 2023 May; 107(5-2):055102. PubMed ID: 37329044 [TBL] [Abstract][Full Text] [Related]
17. Evaporation and drying characteristics of the sessile ferrofluid droplet under a horizontal magnetic field. Liu Z; Zhou J; Li Y; Zhuo X; Shi X; Jing D Fundam Res; 2022 Mar; 2(2):222-229. PubMed ID: 38933170 [TBL] [Abstract][Full Text] [Related]
18. On-demand ferrofluid droplet formation with non-linear magnetic permeability in the presence of high non-uniform magnetic fields. Bijarchi MA; Yaghoobi M; Favakeh A; Shafii MB Sci Rep; 2022 Jun; 12(1):10868. PubMed ID: 35760843 [TBL] [Abstract][Full Text] [Related]
19. Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions. Lira SA; Miranda JA Phys Rev E; 2016 Jan; 93(1):013129. PubMed ID: 26871176 [TBL] [Abstract][Full Text] [Related]
20. Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Zhu GP; Nguyen NT; Ramanujan RV; Huang XY Langmuir; 2011 Dec; 27(24):14834-41. PubMed ID: 22044246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]