These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 17712562)

  • 21. Osmoregulation in the Antarctic nematode Panagrolaimus davidi.
    Wharton DA
    J Exp Biol; 2010 Jun; 213(Pt 12):2025-30. PubMed ID: 20511515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular evolution in Panagrolaimus nematodes: origins of parthenogenesis, hermaphroditism and the Antarctic species P. davidi.
    Lewis SC; Dyal LA; Hilburn CF; Weitz S; Liau WS; Lamunyon CW; Denver DR
    BMC Evol Biol; 2009 Jan; 9():15. PubMed ID: 19149894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The oatmeal nematode Panagrellus redivivus survives moderately low temperatures by freezing tolerance and cryoprotective dehydration.
    Hayashi M; Wharton DA
    J Comp Physiol B; 2011 Apr; 181(3):335-42. PubMed ID: 21153645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-decadal survival of an Antarctic nematode, Plectus murrayi, in a -20°C stored moss sample.
    Kagoshima H; Kito K; Aizu T; Shin-i T; Kanda H; Kobayashi S; Toyoda A; Fujiyama A; Kohara Y; Convey P; Niki H
    Cryo Letters; 2012; 33(4):280-8. PubMed ID: 22987239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ability of the Antarctic nematode Panagrolaimus davidi to survive intracellular freezing is dependent upon nutritional status.
    Raymond MR; Wharton DA
    J Comp Physiol B; 2013 Feb; 183(2):181-8. PubMed ID: 22836298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cold tolerance abilities of two entomopathogenic nematodes, Steinernema feltiae and Heterorhabditis bacteriophora.
    Ali F; Wharton DA
    Cryobiology; 2013 Feb; 66(1):24-9. PubMed ID: 23142823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Survival of intracellular freezing by the Antarctic nematode Panagrolaimus davidi.
    Wharton D; Ferns D
    J Exp Biol; 1995; 198(Pt 6):1381-7. PubMed ID: 9319273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution and characterization of recrystallization inhibitor activity in plant and lichen species from the UK and maritime Antarctic.
    Doucet CJ; Byass L; Elias L; Worrall D; Smallwood M; Bowles DJ
    Cryobiology; 2000 May; 40(3):218-27. PubMed ID: 10860621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental studies of ice nucleation in an Antarctic springtail (Collembola, Isotomidae).
    Block W; Worland MR
    Cryobiology; 2001 May; 42(3):170-81. PubMed ID: 11578116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of diapause and cold-acclimation on the avoidance of freezing injury in fat body tissue of the rice stem borer, Chilo suppressalis Walker.
    Izumi Y; Sonoda S; Tsumuki H
    J Insect Physiol; 2007 Jul; 53(7):685-90. PubMed ID: 17543330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of slow desiccation and freezing on gene transcription and stress survival of an Antarctic nematode.
    Adhikari BN; Wall DH; Adams BJ
    J Exp Biol; 2010 Jun; 213(11):1803-12. PubMed ID: 20472766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors that influence freezing in the sub-Antarctic springtail Tullbergia antarctica.
    Worland MR
    J Insect Physiol; 2005 Aug; 51(8):881-94. PubMed ID: 15936029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica.
    Lee RE; Elnitsky MA; Rinehart JP; Hayward SA; Sandro LH; Denlinger DL
    J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile Deschampsia antarctica E. Desv.
    Chew O; Lelean S; John UP; Spangenberg GC
    Plant Cell Environ; 2012 Apr; 35(4):829-37. PubMed ID: 22070607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv.
    John UP; Polotnianka RM; Sivakumaran KA; Chew O; Mackin L; Kuiper MJ; Talbot JP; Nugent GD; Mautord J; Schrauf GE; Spangenberg GC
    Plant Cell Environ; 2009 Apr; 32(4):336-48. PubMed ID: 19143989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms.
    Raymond JA; Fritsen CH
    Cryobiology; 2001 Aug; 43(1):63-70. PubMed ID: 11812052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms.
    Raymond JA; Knight CA
    Cryobiology; 2003 Apr; 46(2):174-81. PubMed ID: 12686207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium.
    Gilbert JA; Davies PL; Laybourn-Parry J
    FEMS Microbiol Lett; 2005 Apr; 245(1):67-72. PubMed ID: 15796981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Freezing in nematodes: the effects of variable water contents.
    O'Dell SJ; Crowe JH
    Cryobiology; 1979 Dec; 16(6):534-41. PubMed ID: 544178
    [No Abstract]   [Full Text] [Related]  

  • 40. Heat tolerance and its plasticity in Antarctic fishes.
    Bilyk KT; Devries AL
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Apr; 158(4):382-90. PubMed ID: 21159323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.