These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17712568)

  • 1. Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress.
    Shabala S; Cuin TA; Prismall L; Nemchinov LG
    Planta; 2007 Dec; 227(1):189-97. PubMed ID: 17712568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced resistance to salt, cold and wound stresses by overproduction of animal cell death suppressors Bcl-xL and Ced-9 in tobacco cells - their possible contribution through improved function of organella.
    Qiao J; Mitsuhara I; Yazaki Y; Sakano K; Gotoh Y; Miura M; Ohashi Y
    Plant Cell Physiol; 2002 Sep; 43(9):992-1005. PubMed ID: 12354917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ced-9 inhibits Al-induced programmed cell death and promotes Al tolerance in tobacco.
    Wang W; Pan J; Zheng K; Chen H; Shao H; Guo Y; Bian H; Han N; Wang J; Zhu M
    Biochem Biophys Res Commun; 2009 May; 383(1):141-5. PubMed ID: 19341713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides.
    Chen S; Dickman MB
    J Exp Bot; 2004 Dec; 55(408):2617-23. PubMed ID: 15475374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bcl-2 family members inhibit oxidative stress-induced programmed cell death in Saccharomyces cerevisiae.
    Chen SR; Dunigan DD; Dickman MB
    Free Radic Biol Med; 2003 May; 34(10):1315-25. PubMed ID: 12726919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid Peroxide-Derived Short-Chain Carbonyls Mediate Hydrogen Peroxide-Induced and Salt-Induced Programmed Cell Death in Plants.
    Biswas MS; Mano J
    Plant Physiol; 2015 Jul; 168(3):885-98. PubMed ID: 26025050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco.
    Moschou PN; Paschalidis KA; Delis ID; Andriopoulou AH; Lagiotis GD; Yakoumakis DI; Roubelakis-Angelakis KA
    Plant Cell; 2008 Jun; 20(6):1708-24. PubMed ID: 18577660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress.
    Xu P; Rogers SJ; Roossinck MJ
    Proc Natl Acad Sci U S A; 2004 Nov; 101(44):15805-10. PubMed ID: 15505199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt causes ion disequilibrium-induced programmed cell death in yeast and plants.
    Huh GH; Damsz B; Matsumoto TK; Reddy MP; Rus AM; Ibeas JI; Narasimhan ML; Bressan RA; Hasegawa PM
    Plant J; 2002 Mar; 29(5):649-59. PubMed ID: 11874577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ectopic Expression of Aeluropus littoralis Plasma Membrane Protein Gene AlTMP1 Confers Abiotic Stress Tolerance in Transgenic Tobacco by Improving Water Status and Cation Homeostasis.
    Ben Romdhane W; Ben-Saad R; Meynard D; Verdeil JL; Azaza J; Zouari N; Fki L; Guiderdoni E; Al-Doss A; Hassairi A
    Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28338609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress.
    Lu Y; Li N; Sun J; Hou P; Jing X; Zhu H; Deng S; Han Y; Huang X; Ma X; Zhao N; Zhang Y; Shen X; Chen S
    Tree Physiol; 2013 Jan; 33(1):81-95. PubMed ID: 23264032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of a novel SbMYB15 from Salicornia brachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynthesis in transgenic tobacco.
    Shukla PS; Gupta K; Agarwal P; Jha B; Agarwal PK
    Planta; 2015 Dec; 242(6):1291-308. PubMed ID: 26202734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Animal cell-death suppressors Bcl-x(L) and Ced-9 inhibit cell death in tobacco plants.
    Mitsuhara I; Malik KA; Miura M; Ohashi Y
    Curr Biol; 1999 Jul; 9(14):775-8. PubMed ID: 10421577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na
    Chen Y; Han Y; Kong X; Kang H; Ren Y; Wang W
    Physiol Plant; 2017 Feb; 159(2):161-177. PubMed ID: 27545692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of animal anti-apoptotic gene Ced-9 enhances tolerance during Glycine max L.-Bradyrhizobium japonicum interaction under saline stress but reduces nodule formation.
    Robert G; Muñoz N; Melchiorre M; Sánchez F; Lascano R
    PLoS One; 2014; 9(7):e101747. PubMed ID: 25050789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmed cell death in C. elegans, mammals and plants.
    Lord CE; Gunawardena AH
    Eur J Cell Biol; 2012 Aug; 91(8):603-13. PubMed ID: 22512890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abiotic stress induces apoptotic-like features in tobacco that is inhibited by expression of human Bcl-2.
    Li W; Dickman MB
    Biotechnol Lett; 2004 Jan; 26(2):87-95. PubMed ID: 15000473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion transport in broad bean leaf mesophyll under saline conditions.
    Percey WJ; Shabala L; Breadmore MC; Guijt RM; Bose J; Shabala S
    Planta; 2014 Oct; 240(4):729-43. PubMed ID: 25048444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants.
    Chen H; He H; Yu D
    Physiol Plant; 2011 Jan; 141(1):11-8. PubMed ID: 20875056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Bcl-2 cannot directly inhibit the Caenorhabditis elegans Apaf-1 homologue CED-4, but can interact with EGL-1.
    Jabbour AM; Puryer MA; Yu JY; Lithgow T; Riffkin CD; Ashley DM; Vaux DL; Ekert PG; Hawkins CJ
    J Cell Sci; 2006 Jun; 119(Pt 12):2572-82. PubMed ID: 16735440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.