BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 17712627)

  • 1. Pituicyte stellation is prevented by RhoA-or Cdc42-dependent actin polymerization.
    Rosso L; Pierson PM; Golfier C; Peteri-Brunbäck B; Deroanne C; Van Obberghen-Schilling E; Mienville JM
    Cell Mol Neurobiol; 2007 Sep; 27(6):791-804. PubMed ID: 17712627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vasopressin and oxytocin reverse adenosine-induced pituicyte stellation via calcium-dependent activation of Cdc42.
    Rosso L; Peteri-Brunbäck B; Vouret-Craviari V; Deroanne C; Van Obberghen-Schilling E; Mienville JM
    Eur J Neurosci; 2002 Dec; 16(12):2324-32. PubMed ID: 12492427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RhoA inhibition is a key step in pituicyte stellation induced by A(1)-type adenosine receptor activation.
    Rosso L; Peteri-Brunbäck B; Vouret-Craviari V; Deroanne C; Troadec JD; Thirion S; Van Obberghen-Schilling E; Mienville JM
    Glia; 2002 Jun; 38(4):351-62. PubMed ID: 12007147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-glutamate activates RhoA GTPase leading to suppression of astrocyte stellation.
    Chen CJ; Ou YC; Lin SY; Liao SL; Huang YS; Chiang AN
    Eur J Neurosci; 2006 Apr; 23(8):1977-87. PubMed ID: 16630046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of astrocyte morphology by RhoA and lysophosphatidic acid.
    Ramakers GJ; Moolenaar WH
    Exp Cell Res; 1998 Dec; 245(2):252-62. PubMed ID: 9851865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RhoA inactivation is crucial to manganese-induced astrocyte stellation.
    Chen CJ; Liao SL; Huang YS; Chiang AN
    Biochem Biophys Res Commun; 2005 Jan; 326(4):873-9. PubMed ID: 15607750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct involvement of cdc42 and RhoA GTPases in actin organization and cell shape in untransformed and Dbl oncogene transformed NIH3T3 cells.
    Olivo C; Vanni C; Mancini P; Silengo L; Torrisi MR; Tarone G; Defilippi P; Eva A
    Oncogene; 2000 Mar; 19(11):1428-36. PubMed ID: 10723134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RhoA and lysophosphatidic acid are involved in the actin cytoskeleton reorganization of astrocytes exposed to ethanol.
    Guasch RM; Tomas M; Miñambres R; Valles S; Renau-Piqueras J; Guerri C
    J Neurosci Res; 2003 May; 72(4):487-502. PubMed ID: 12704810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cdc42 and RhoA have opposing roles in regulating membrane type 1-matrix metalloproteinase localization and matrix metalloproteinase-2 activation.
    Ispanovic E; Serio D; Haas TL
    Am J Physiol Cell Physiol; 2008 Sep; 295(3):C600-10. PubMed ID: 18562481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological plasticity and rearrangement of cytoskeletons in pituicytes cultured from adult rat neurohypophysis.
    Miyata S; Furuya K; Nakai S; Bun H; Kiyohara T
    Neurosci Res; 1999 Apr; 33(4):299-306. PubMed ID: 10401983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of Rho GTPases and their effectors in the secretory process of PC12 cells.
    Frantz C; Coppola T; Regazzi R
    Exp Cell Res; 2002 Feb; 273(2):119-26. PubMed ID: 11822867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The small GTPase RhoA regulates the contraction of smooth muscle tissues by catalyzing the assembly of cytoskeletal signaling complexes at membrane adhesion sites.
    Zhang W; Huang Y; Gunst SJ
    J Biol Chem; 2012 Oct; 287(41):33996-4008. PubMed ID: 22893699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rho and Rac but not Cdc42 regulate endothelial cell permeability.
    Wójciak-Stothard B; Potempa S; Eichholtz T; Ridley AJ
    J Cell Sci; 2001 Apr; 114(Pt 7):1343-55. PubMed ID: 11257000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pituicyte modulation of neurohormone output.
    Rosso L; Mienville JM
    Glia; 2009 Feb; 57(3):235-43. PubMed ID: 18803308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Rho-GTPases in complement-mediated glomerular epithelial cell injury.
    Zhang H; Cybulsky AV; Aoudjit L; Zhu J; Li H; Lamarche-Vane N; Takano T
    Am J Physiol Renal Physiol; 2007 Jul; 293(1):F148-56. PubMed ID: 17376765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic reorganization of the astrocyte actin cytoskeleton elicited by cAMP and PACAP: a role for phosphatidylInositol 3-kinase inhibition.
    Perez V; Bouschet T; Fernandez C; Bockaert J; Journot L
    Eur J Neurosci; 2005 Jan; 21(1):26-32. PubMed ID: 15654840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p70 S6 kinase in the control of actin cytoskeleton dynamics and directed migration of ovarian cancer cells.
    Ip CK; Cheung AN; Ngan HY; Wong AS
    Oncogene; 2011 May; 30(21):2420-32. PubMed ID: 21258406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RhoA activation promotes transendothelial migration of monocytes via ROCK.
    Honing H; van den Berg TK; van der Pol SM; Dijkstra CD; van der Kammen RA; Collard JG; de Vries HE
    J Leukoc Biol; 2004 Mar; 75(3):523-8. PubMed ID: 14634067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CDC42 drives RHOA activity and actin polymerization during capacitation.
    Reyes-Miguel T; Roa-Espitia AL; Baltiérrez-Hoyos R; Hernández-González EO
    Reproduction; 2020 Sep; 160(3):393-404. PubMed ID: 32567555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypotonicity induces membrane protrusions and actin remodeling via activation of small GTPases Rac and Cdc42 in Rat-1 fibroblasts.
    Carton I; Hermans D; Eggermont J
    Am J Physiol Cell Physiol; 2003 Oct; 285(4):C935-44. PubMed ID: 12788692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.