BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17713211)

  • 1. Metal-phytoplankton interactions: modeling the effect of competing ions (H+, Ca2+, and Mg2+) on uranium uptake.
    Fortin C; Denison FH; Garnier-Laplace J
    Environ Toxicol Chem; 2007 Feb; 26(2):242-8. PubMed ID: 17713211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uranium complexation and uptake by a green alga in relation to chemical speciation: the importance of the free uranyl ion.
    Fortin C; Dutel L; Garnier-Laplace J
    Environ Toxicol Chem; 2004 Apr; 23(4):974-81. PubMed ID: 15095894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uranium accumulation and toxicity in the green alga Chlamydomonas reinhardtii is modulated by pH.
    Lavoie M; Sabatier S; Garnier-Laplace J; Fortin C
    Environ Toxicol Chem; 2014 Jun; 33(6):1372-9. PubMed ID: 24596137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM.
    François L; Fortin C; Campbell PG
    Aquat Toxicol; 2007 Aug; 84(2):123-32. PubMed ID: 17651821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ni uptake by a green alga. 2. Validation of equilibrium models for competition effects.
    Worms IA; Wilkinson KJ
    Environ Sci Technol; 2007 Jun; 41(12):4264-70. PubMed ID: 17626423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of water hardness on the toxicity of uranium to a tropical freshwater alga Chlorella sp.
    Charles AL; Markich SJ; Stauber JL; De Filippis LF
    Aquat Toxicol; 2002 Oct; 60(1-2):61-73. PubMed ID: 12204587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biotic ligand model can successfully predict the uptake of a trivalent ion by a unicellular alga below pH 6.50 but not above: possible role of hydroxo-species.
    Crémazy A; Campbell PG; Fortin C
    Environ Sci Technol; 2013 Mar; 47(5):2408-15. PubMed ID: 23360212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking the chemical speciation of cerium to its bioavailability in water for a freshwater alga.
    El-Akl P; Smith S; Wilkinson KJ
    Environ Toxicol Chem; 2015 Aug; 34(8):1711-9. PubMed ID: 25772589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of pH on indium bioaccumulation by Chlamydomonas reinhardtii.
    Yang G; Hadioui M; Wang Q; Wilkinson KJ
    Environ Pollut; 2019 Jul; 250():40-46. PubMed ID: 30981934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of silver to two freshwater algae, Chlamydomonas reinhardtii and Pseudokirchneriella sub-capitata, grown under continuous culture conditions: influence of thiosulphate.
    Hiriart-Baer VP; Fortin C; Lee DY; Campbell PG
    Aquat Toxicol; 2006 Jun; 78(2):136-48. PubMed ID: 16621059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea-pig.
    Noma A; Tsuboi N
    J Physiol; 1987 Jan; 382():193-211. PubMed ID: 2442361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Cu and pb on Ni bioaccumulation by Chlamydomonas reinhardtii: Validation of the biotic ligand model in binary metal Mixtures.
    Flouty R; Khalaf G
    Ecotoxicol Environ Saf; 2015 Mar; 113():79-86. PubMed ID: 25483376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can we predict uranium bioavailability based on soil parameters? Part 2: soil solution uranium concentration is not a good bioavailability index.
    Vandenhove H; Van Hees M; Wannijn J; Wouters K; Wang L
    Environ Pollut; 2007 Jan; 145(2):577-86. PubMed ID: 16781804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii.
    Sánchez-Marín P; Fortin C; Campbell PG
    Biometals; 2014 Feb; 27(1):173-81. PubMed ID: 24442517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cation competition on cadmium uptake from solution by the earthworm Eisenia fetida.
    Li LZ; Zhou DM; Wang P; Jin SY; Peijnenburg WJ; Reinecke AJ; van Gestel CA
    Environ Toxicol Chem; 2009 Aug; 28(8):1732-8. PubMed ID: 19265459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selenite transport and its inhibition in the unicellular green alga Chlamydomonas reinhardtii.
    Morlon H; Fortin C; Adam C; Garnier-Laplace J
    Environ Toxicol Chem; 2006 May; 25(5):1408-17. PubMed ID: 16704076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting cadmium accumulation and toxicity in a green alga in the presence of varying essential element concentrations using a biotic ligand model.
    Lavoie M; Campbell PG; Fortin C
    Environ Sci Technol; 2014 Jan; 48(2):1222-9. PubMed ID: 24341312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of essential elements on cadmium uptake and toxicity in a unicellular green alga: the protective effect of trace zinc and cobalt concentrations.
    Lavoie M; Fortin C; Campbell PG
    Environ Toxicol Chem; 2012 Jul; 31(7):1445-52. PubMed ID: 22544654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biouptake of a rare earth metal (Nd) by Chlamydomonas reinhardtii - Bioavailability of small organic complexes and role of hardness ions.
    Yang G; Wilkinson KJ
    Environ Pollut; 2018 Dec; 243(Pt A):263-269. PubMed ID: 30189390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogeochemical Controls of Uranium Bioavailability from the Dissolved Phase in Natural Freshwaters.
    Croteau MN; Fuller CC; Cain DJ; Campbell KM; Aiken G
    Environ Sci Technol; 2016 Aug; 50(15):8120-7. PubMed ID: 27385165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.