These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 17713266)

  • 1. [The degradation performance of chitin short fiber reinforced polycaprolactone composite in vitro].
    Duan L; Xu Z; Sun K; Zhao X; Fang J; Qin X; Gong Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):582-5. PubMed ID: 17713266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Preparation and biological evaluation of Chitin short fiber reinforced polycaprolactone composite].
    Duan L; Xu Z; Sun K; Zhao X; Fang J; Qin X; Gong Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):565-8. PubMed ID: 16856390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The degradation performance of bioabsorbable acylchitin fiber reinforced PLA composite materials in vitro and in vivo].
    Chen C; Cheng H; Sun K; Wu R; Jiang R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Jun; 17(2):117-21. PubMed ID: 12557760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressive properties and degradability of poly(epsilon-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation.
    Ang KC; Leong KF; Chua CK; Chandrasekaran M
    J Biomed Mater Res A; 2007 Mar; 80(3):655-60. PubMed ID: 17051539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass--polycaprolactone composites.
    Prabhakar RL; Brocchini S; Knowles JC
    Biomaterials; 2005 May; 26(15):2209-18. PubMed ID: 15585222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactic acid based PEU/HA and PEU/BCP composites: Dynamic mechanical characterization of hydrolysis.
    Rich J; Tuominen J; Kylmä J; Seppälä J; Nazhat SN; Tanner KE
    J Biomed Mater Res; 2002; 63(3):346-53. PubMed ID: 12115768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite.
    Ahmed I; Parsons AJ; Palmer G; Knowles JC; Walker GS; Rudd CD
    Acta Biomater; 2008 Sep; 4(5):1307-14. PubMed ID: 18448401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a bioactive glass fiber reinforced starch-polycaprolactone composite.
    Jukola H; Nikkola L; Gomes ME; Chiellini F; Tukiainen M; Kellomäki M; Chiellini E; Reis RL; Ashammakhi N
    J Biomed Mater Res B Appl Biomater; 2008 Oct; 87(1):197-203. PubMed ID: 18386831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers.
    Chouzouri G; Xanthos M
    Acta Biomater; 2007 Sep; 3(5):745-56. PubMed ID: 17392042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber-reinforced bioactive and bioabsorbable hybrid composites.
    Huttunen M; Törmälä P; Godinho P; Kellomäki M
    Biomed Mater; 2008 Sep; 3(3):034106. PubMed ID: 18689925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fiber reinforced calcium phosphate cements -- on the way to degradable load bearing bone substitutes?
    Krüger R; Groll J
    Biomaterials; 2012 Sep; 33(25):5887-900. PubMed ID: 22632767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation.
    Wong HM; Wu S; Chu PK; Cheng SH; Luk KD; Cheung KM; Yeung KW
    Biomaterials; 2013 Sep; 34(29):7016-32. PubMed ID: 23787111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A strategy for controlling degradation in vitro of carbon fiber-reinforced polylactic acid composites (by combining fiber modification and pulsed electromagnetic fields).
    Zhang D; Qi J; Qiao S; Liu L; Wang B; Zhao Z
    J Biomater Sci Polym Ed; 2018 Nov; 29(16):1964-1977. PubMed ID: 30141735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts.
    Soares CJ; Santana FR; Pereira JC; Araujo TS; Menezes MS
    J Prosthet Dent; 2008 Jun; 99(6):444-54. PubMed ID: 18514666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical features and criteria in designing fiber-reinforced composite materials: from the aerospace and aeronautical field to biomedical applications.
    Gloria A; Ronca D; Russo T; D'Amora U; Chierchia M; De Santis R; Nicolais L; Ambrosio L
    J Appl Biomater Biomech; 2011; 9(2):151-63. PubMed ID: 22065393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of chitin and chitosan on degradation of DL-polylactide in vitro].
    Liao K; Tang F; Luo L; Lu Z; Huang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Sep; 16(3):267-70. PubMed ID: 12552741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chest wall reconstruction with two types of biodegradable polymer prostheses in dogs.
    Qin X; Tang H; Xu Z; Zhao X; Sun Y; Gong Z; Duan L
    Eur J Cardiothorac Surg; 2008 Oct; 34(4):870-4. PubMed ID: 18678508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research on biocompatibility and in vivo degradation of biodegradable chest wall prosthesis materials in experimental animals].
    Gong Z; Xu Z; Qin X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Aug; 21(8):867-71. PubMed ID: 17882887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications.
    Godara A; Raabe D; Green S
    Acta Biomater; 2007 Mar; 3(2):209-20. PubMed ID: 17236831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioresorbable composite materials for orthopaedic devices.
    Berry M
    Med Device Technol; 2008 Sep; 19(5):69-70, 72. PubMed ID: 18947156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.