BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 17713416)

  • 1. Role of glucocorticoids in the molecular regulation of muscle wasting.
    Menconi M; Fareed M; O'Neal P; Poylin V; Wei W; Hasselgren PO
    Crit Care Med; 2007 Sep; 35(9 Suppl):S602-8. PubMed ID: 17713416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ubiquitin-proteasome pathway as a therapeutic target for muscle wasting.
    Tisdale MJ
    J Support Oncol; 2005; 3(3):209-17. PubMed ID: 15915823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel aspects on the regulation of muscle wasting in sepsis.
    Hasselgren PO; Menconi MJ; Fareed MU; Yang H; Wei W; Evenson A
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2156-68. PubMed ID: 16125115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is there a common mechanism linking muscle wasting in various disease types?
    Tisdale MJ
    Curr Opin Support Palliat Care; 2007 Dec; 1(4):287-92. PubMed ID: 18685377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of skeletal muscle depletion in wasting syndromes: role of ATP-ubiquitin-dependent proteolysis.
    Costelli P; Baccino FM
    Curr Opin Clin Nutr Metab Care; 2003 Jul; 6(4):407-12. PubMed ID: 12806214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apoptosis signalling is essential and precedes protein degradation in wasting skeletal muscle during catabolic conditions.
    Argilés JM; López-Soriano FJ; Busquets S
    Int J Biochem Cell Biol; 2008; 40(9):1674-8. PubMed ID: 18329944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular mechanisms controlling protein degradation in catabolic states.
    Ding X; Price SR; Bailey JL; Mitch WE
    Miner Electrolyte Metab; 1997; 23(3-6):194-7. PubMed ID: 9387115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of skeletal muscle atrophy.
    Ventadour S; Attaix D
    Curr Opin Rheumatol; 2006 Nov; 18(6):631-5. PubMed ID: 17053511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered responses in skeletal muscle protein turnover during aging in anabolic and catabolic periods.
    Attaix D; Mosoni L; Dardevet D; Combaret L; Mirand PP; Grizard J
    Int J Biochem Cell Biol; 2005 Oct; 37(10):1962-73. PubMed ID: 15905114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca(2+)-dependent proteolysis in muscle wasting.
    Costelli P; Reffo P; Penna F; Autelli R; Bonelli G; Baccino FM
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2134-46. PubMed ID: 15893952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of ubiquitin-proteasome system in ageing.
    Löw P
    Gen Comp Endocrinol; 2011 May; 172(1):39-43. PubMed ID: 21324320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose infusion suppresses surgery-induced muscle protein breakdown by inhibiting ubiquitin-proteasome pathway in rats.
    Mikura M; Yamaoka I; Doi M; Kawano Y; Nakayama M; Nakao R; Hirasaka K; Okumura Y; Nikawa T
    Anesthesiology; 2009 Jan; 110(1):81-8. PubMed ID: 19104174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms activating proteolysis to cause muscle atrophy in catabolic conditions.
    Mitch WE; Price SR
    J Ren Nutr; 2003 Apr; 13(2):149-52. PubMed ID: 12671840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucocorticoids do not regulate the expression of proteolytic genes in skeletal muscle from Cushing's syndrome patients.
    Rallière C; Tauveron I; Taillandier D; Guy L; Boiteux JP; Giraud B; Attaix D; Thiéblot P
    J Clin Endocrinol Metab; 1997 Sep; 82(9):3161-4. PubMed ID: 9284762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulin-like growth factor-1 and muscle wasting in chronic heart failure.
    Schulze PC; Späte U
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2023-35. PubMed ID: 15964237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox regulation in anabolic and catabolic processes.
    Dröge W
    Curr Opin Clin Nutr Metab Care; 2006 May; 9(3):190-5. PubMed ID: 16607115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms regulating protein turnover in muscle.
    Price SR; Du JD; Bailey JL; Mitch WE
    Am J Kidney Dis; 2001 Jan; 37(1 Suppl 2):S112-4. PubMed ID: 11158874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromuscular electrical stimulation reduces skeletal muscle protein degradation and stimulates insulin-like growth factors in an age- and current-dependent manner: a randomized, controlled clinical trial in major abdominal surgical patients.
    Strasser EM; Stättner S; Karner J; Klimpfinger M; Freynhofer M; Zaller V; Graf A; Wessner B; Bachl N; Roth E; Quittan M
    Ann Surg; 2009 May; 249(5):738-43. PubMed ID: 19387331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuation of proteasome-induced proteolysis in skeletal muscle by {beta}-hydroxy-{beta}-methylbutyrate in cancer-induced muscle loss.
    Smith HJ; Mukerji P; Tisdale MJ
    Cancer Res; 2005 Jan; 65(1):277-83. PubMed ID: 15665304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An assay of microsomal membrane-associated proteasomes demonstrates increased proteolytic activity in skeletal muscle of intensive care unit patients.
    Klaude M; Hammarqvist F; Wemerman J
    Clin Nutr; 2005 Apr; 24(2):259-65. PubMed ID: 15784487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.