These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 17713582)
21. Che-1/AATF binds to RNA polymerase I machinery and sustains ribosomal RNA gene transcription. Sorino C; Catena V; Bruno T; De Nicola F; Scalera S; Bossi G; Fabretti F; Mano M; De Smaele E; Fanciulli M; Iezzi S Nucleic Acids Res; 2020 Jun; 48(11):5891-5906. PubMed ID: 32421830 [TBL] [Abstract][Full Text] [Related]
22. Isolation and characterization of a chicken homolog of the E2F-1 transcription factor. Pasteau S; Loiseau L; Arnaud L; Trembleau A; Brun G Oncogene; 1995 Oct; 11(8):1475-86. PubMed ID: 7478572 [TBL] [Abstract][Full Text] [Related]
23. Unbiased analysis of RB-mediated transcriptional repression identifies novel targets and distinctions from E2F action. Markey MP; Angus SP; Strobeck MW; Williams SL; Gunawardena RW; Aronow BJ; Knudsen ES Cancer Res; 2002 Nov; 62(22):6587-97. PubMed ID: 12438254 [TBL] [Abstract][Full Text] [Related]
24. RBP1 induces growth arrest by repression of E2F-dependent transcription. Lai A; Marcellus RC; Corbeil HB; Branton PE Oncogene; 1999 Mar; 18(12):2091-100. PubMed ID: 10321733 [TBL] [Abstract][Full Text] [Related]
25. Che-1: a new effector of checkpoints signaling. Floridi A; Fanciulli M Cell Cycle; 2007 Apr; 6(7):804-6. PubMed ID: 17377493 [TBL] [Abstract][Full Text] [Related]
26. The cancer antiapoptosis mouse survivin gene: characterization of locus and transcriptional requirements of basal and cell cycle-dependent expression. Li F; Altieri DC Cancer Res; 1999 Jul; 59(13):3143-51. PubMed ID: 10397257 [TBL] [Abstract][Full Text] [Related]
27. A new member of the DP family, DP-3, with distinct protein products suggests a regulatory role for alternative splicing in the cell cycle transcription factor DRTF1/E2F. Ormondroyd E; de la Luna S; La Thangue NB Oncogene; 1995 Oct; 11(8):1437-46. PubMed ID: 7478568 [TBL] [Abstract][Full Text] [Related]
28. TSG101 interacts with apoptosis-antagonizing transcription factor and enhances androgen receptor-mediated transcription by promoting its monoubiquitination. Burgdorf S; Leister P; Scheidtmann KH J Biol Chem; 2004 Apr; 279(17):17524-34. PubMed ID: 14761944 [TBL] [Abstract][Full Text] [Related]
29. Differentiation primary response genes and proto-oncogenes as positive and negative regulators of terminal hematopoietic cell differentiation. Liebermann DA; Hoffman B Stem Cells; 1994 Jul; 12(4):352-69. PubMed ID: 7951003 [TBL] [Abstract][Full Text] [Related]
30. The prolyl isomerase Pin1 affects Che-1 stability in response to apoptotic DNA damage. De Nicola F; Bruno T; Iezzi S; Di Padova M; Floridi A; Passananti C; Del Sal G; Fanciulli M J Biol Chem; 2007 Jul; 282(27):19685-91. PubMed ID: 17468107 [TBL] [Abstract][Full Text] [Related]
31. Regulation of the cdk inhibitor p21 gene during cell cycle progression is under the control of the transcription factor E2F. Hiyama H; Iavarone A; Reeves SA Oncogene; 1998 Mar; 16(12):1513-23. PubMed ID: 9569018 [TBL] [Abstract][Full Text] [Related]
32. Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression. Mirza A; Wu Q; Wang L; McClanahan T; Bishop WR; Gheyas F; Ding W; Hutchins B; Hockenberry T; Kirschmeier P; Greene JR; Liu S Oncogene; 2003 Jun; 22(23):3645-54. PubMed ID: 12789273 [TBL] [Abstract][Full Text] [Related]
33. The transcriptional repressor gene Mad3 is a novel target for regulation by E2F1. Fox EJ; Wright SC Biochem J; 2003 Feb; 370(Pt 1):307-13. PubMed ID: 12444919 [TBL] [Abstract][Full Text] [Related]
34. Transcriptional control of the Htf9-A/RanBP-1 gene during the cell cycle. Di Matteo G; Fuschi P; Zerfass K; Moretti S; Ricordy R; Cenciarelli C; Tripodi M; Jansen-Durr P; Lavia P Cell Growth Differ; 1995 Oct; 6(10):1213-24. PubMed ID: 8845298 [TBL] [Abstract][Full Text] [Related]
35. Physical and functional interactions between members of the tumour suppressor p53 and the Sp families of transcription factors: importance for the regulation of genes involved in cell-cycle arrest and apoptosis. Koutsodontis G; Vasilaki E; Chou WC; Papakosta P; Kardassis D Biochem J; 2005 Jul; 389(Pt 2):443-55. PubMed ID: 15790310 [TBL] [Abstract][Full Text] [Related]
36. AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis. Höpker K; Hagmann H; Khurshid S; Chen S; Hasskamp P; Seeger-Nukpezah T; Schilberg K; Heukamp L; Lamkemeyer T; Sos ML; Thomas RK; Lowery D; Roels F; Fischer M; Liebau MC; Resch U; Kisner T; Röther F; Bartram MP; Müller RU; Fabretti F; Kurschat P; Schumacher B; Gaestel M; Medema RH; Yaffe MB; Schermer B; Reinhardt HC; Benzing T EMBO J; 2012 Oct; 31(20):3961-75. PubMed ID: 22909821 [TBL] [Abstract][Full Text] [Related]
37. Apoptosis-antagonizing transcription factor (AATF) gene silencing: role in induction of apoptosis and down-regulation of estrogen receptor in breast cancer cells. Sharma M Biotechnol Lett; 2013 Oct; 35(10):1561-70. PubMed ID: 23801113 [TBL] [Abstract][Full Text] [Related]
38. HIPK2 sustains apoptotic response by phosphorylating Che-1/AATF and promoting its degradation. De Nicola F; Catena V; Rinaldo C; Bruno T; Iezzi S; Sorino C; Desantis A; Camerini S; Crescenzi M; Floridi A; Passananti C; Soddu S; Fanciulli M Cell Death Dis; 2014 Sep; 5(9):e1414. PubMed ID: 25210797 [TBL] [Abstract][Full Text] [Related]
39. A new baby in the c-Myc-directed transcriptional machinery: Che-1/AATF. Folgiero V; Sorino C; Locatelli F; Fanciulli M Cell Cycle; 2018; 17(11):1286-1290. PubMed ID: 29943642 [TBL] [Abstract][Full Text] [Related]