These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 17713767)

  • 1. Spatial orientation in the bushcricket Leptophyes punctatissima (Phaneropterinae; Orthoptera): III. Peripheral directionality and central nervous processing of spatial cues.
    Kostarakos K; Rheinlaender J; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Nov; 193(11):1115-23. PubMed ID: 17713767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial orientation in the bushcricket Leptophyes punctatissima (Phaneropterinae; Orthoptera): II. Phonotaxis to elevated sound sources on a walking compensator.
    Ofner E; Rheinlaender J; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Mar; 193(3):321-30. PubMed ID: 17273848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial orientation in the bushcricket Leptophyes punctatissima (Phaneropterinae; Orthoptera): I. Phonotaxis to elevated and depressed sound sources.
    Rheinlaender J; Hartbauer M; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Mar; 193(3):313-20. PubMed ID: 17086427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory lateralization in bushcrickets: a new dichotic paradigm.
    Rheinlaender J; Shen JX; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Apr; 192(4):389-97. PubMed ID: 16362304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bat head-related transfer function reveals binaural cues for sound localization in azimuth and elevation.
    Aytekin M; Grassi E; Sahota M; Moss CF
    J Acoust Soc Am; 2004 Dec; 116(6):3594-605. PubMed ID: 15658710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encoding of sound localization cues by an identified auditory interneuron: effects of stimulus temporal pattern.
    Samson AH; Pollack GS
    J Neurophysiol; 2002 Nov; 88(5):2322-8. PubMed ID: 12424273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliable coding of small, behaviourally relevant interaural intensity differences in a pair of interneurons of an insect.
    Stradner J; Römer H
    Biol Lett; 2008 Dec; 4(6):711-4. PubMed ID: 18713711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binaural weighting of pinna cues in human sound localization.
    Hofman M; Van Opstal J
    Exp Brain Res; 2003 Feb; 148(4):458-70. PubMed ID: 12582829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sound localization under perturbed binaural hearing.
    Van Wanrooij MM; Van Opstal AJ
    J Neurophysiol; 2007 Jan; 97(1):715-26. PubMed ID: 17065242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of monaural spectral cues is enhanced in the presence of cues to sound-source lateral angle.
    Martin RL; Paterson M; McAnally KI
    J Assoc Res Otolaryngol; 2004 Mar; 5(1):80-9. PubMed ID: 14648236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat.
    Malhotra S; Lomber SG
    J Neurophysiol; 2007 Jan; 97(1):26-43. PubMed ID: 17035367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera; Tettigoniidae).
    Römer H; Krusch M
    J Comp Physiol A; 2000 Feb; 186(2):181-91. PubMed ID: 10707316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of externalization and spatial cues on the generation of auditory brainstem responses and middle latency responses.
    Junius D; Riedel H; Kollmeier B
    Hear Res; 2007 Mar; 225(1-2):91-104. PubMed ID: 17270375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and physiology of auditory interneurons of the bushcricket Gampsocleis gratiosa.
    Shen JX
    Jpn J Physiol; 1993; 43 Suppl 1():S239-46. PubMed ID: 8271504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing of binaural spatial information in human auditory cortex: neuromagnetic responses to interaural timing and level differences.
    Johnson BW; Hautus MJ
    Neuropsychologia; 2010 Jul; 48(9):2610-9. PubMed ID: 20466010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-pass filters and differential tympanal tuning in a paleotropical bushcricket with an unusually low frequency call.
    Rajaraman K; Mhatre N; Jain M; Postles M; Balakrishnan R; Robert D
    J Exp Biol; 2013 Mar; 216(Pt 5):777-87. PubMed ID: 23125342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The auditory periphery of the ferret. II: The spectral transformations of the external ear and their implications for sound localization.
    Carlile S
    J Acoust Soc Am; 1990 Nov; 88(5):2196-204. PubMed ID: 2269735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spatio-temporal brain dynamics of processing and integrating sound localization cues in humans.
    Tardif E; Murray MM; Meylan R; Spierer L; Clarke S
    Brain Res; 2006 May; 1092(1):161-76. PubMed ID: 16684510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The start of phonotactic walking in the fly Ormia ochracea: a kinematic study.
    Mason AC; Lee N; Oshinsky ML
    J Exp Biol; 2005 Dec; 208(Pt 24):4699-708. PubMed ID: 16326951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Audition in the praying mantis, Mantis religiosa L.: identification of an interneuron mediating ultrasonic hearing.
    Yager DD; Hoy RR
    J Comp Physiol A; 1989 Aug; 165(4):471-93. PubMed ID: 2769607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.