BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 17713795)

  • 1. Adjacent vertebral failure after vertebroplasty: a biomechanical study of low-modulus PMMA cement.
    Boger A; Heini P; Windolf M; Schneider E
    Eur Spine J; 2007 Dec; 16(12):2118-25. PubMed ID: 17713795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical evaluation of calcium phosphate-based nanocomposite versus polymethylmethacrylate cement for percutaneous kyphoplasty.
    Lu Q; Liu C; Wang D; Liu H; Yang H; Yang L
    Spine J; 2019 Nov; 19(11):1871-1884. PubMed ID: 31202837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of endplate-to-endplate cement augmentation on vertebral strength and stiffness in vertebroplasty.
    Steens J; Verdonschot N; Aalsma AM; Hosman AJ
    Spine (Phila Pa 1976); 2007 Jul; 32(15):E419-22. PubMed ID: 17621198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of standard and low-modulus cement augmentation on the stiffness, strength, and endplate pressure distribution in vertebroplasty.
    Kinzl M; Benneker LM; Boger A; Zysset PK; Pahr DH
    Eur Spine J; 2012 May; 21(5):920-9. PubMed ID: 22170449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adjacent vertebral failure after vertebroplasty. A biomechanical investigation.
    Berlemann U; Ferguson SJ; Nolte LP; Heini PF
    J Bone Joint Surg Br; 2002 Jul; 84(5):748-52. PubMed ID: 12188498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomechanical investigation of vertebroplasty in osteoporotic compression fractures and in prophylactic vertebral reinforcement.
    Furtado N; Oakland RJ; Wilcox RK; Hall RM
    Spine (Phila Pa 1976); 2007 Aug; 32(17):E480-7. PubMed ID: 17762281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical comparison of vertebral augmentation with silicone and PMMA cement and two filling grades.
    Schulte TL; Keiler A; Riechelmann F; Lange T; Schmoelz W
    Eur Spine J; 2013 Dec; 22(12):2695-701. PubMed ID: 23880868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty.
    Lim TH; Brebach GT; Renner SM; Kim WJ; Kim JG; Lee RE; Andersson GB; An HS
    Spine (Phila Pa 1976); 2002 Jun; 27(12):1297-302. PubMed ID: 12065977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanics of low-modulus and standard acrylic bone cements in simulated vertebroplasty: A human ex vivo study.
    Holub O; López A; Borse V; Engqvist H; Kapur N; Hall RM; Persson C
    J Biomech; 2015 Sep; 48(12):3258-66. PubMed ID: 26189096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adjacent vertebral body fracture following vertebroplasty with polymethylmethacrylate or calcium phosphate cement: biomechanical evaluation of the cadaveric spine.
    Nouda S; Tomita S; Kin A; Kawahara K; Kinoshita M
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2613-8. PubMed ID: 19910764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biomechanical study of polymethyl methacrylate bone cement and allogeneic bone for strengthening sheep vertebrae].
    Wang Z; Zhang X; Li Z; Feng Q; Chen J; Xie W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Apr; 35(4):471-476. PubMed ID: 33855832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suitability of a calcium phosphate cement in osteoporotic vertebral body fracture augmentation: a controlled, randomized, clinical trial of balloon kyphoplasty comparing calcium phosphate versus polymethylmethacrylate.
    Blattert TR; Jestaedt L; Weckbach A
    Spine (Phila Pa 1976); 2009 Jan; 34(2):108-14. PubMed ID: 19139662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility study of using viscoplastic bone cement for vertebroplasty: an in vivo clinical trial and in vitro cadaveric biomechanical examination.
    Lin SW; Chiang CK; Yang CL; Wang JL
    Spine (Phila Pa 1976); 2010 May; 35(10):E385-91. PubMed ID: 20393389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model.
    Perry A; Mahar A; Massie J; Arrieta N; Garfin S; Kim C
    Spine J; 2005; 5(5):489-93. PubMed ID: 16153574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does the cement stiffness affect fatigue fracture strength of vertebrae after cement augmentation in osteoporotic patients?
    Kolb JP; Kueny RA; Püschel K; Boger A; Rueger JM; Morlock MM; Huber G; Lehmann W
    Eur Spine J; 2013 Jul; 22(7):1650-6. PubMed ID: 23677522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term effects of vertebroplasty: adjacent vertebral fractures.
    Baroud G; Vant C; Wilcox R
    J Long Term Eff Med Implants; 2006; 16(4):265-80. PubMed ID: 17073569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of pulsed jet lavage in vertebroplasty on injection forces of PMMA bone cement: an animal study.
    Boger A; Benneker LM; Krebs J; Boner V; Heini PF; Gisep A
    Eur Spine J; 2009 Dec; 18(12):1957-62. PubMed ID: 19568774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prophylactic vertebroplasty can decrease the fracture risk of adjacent vertebrae: an in vitro cadaveric study.
    Aquarius R; Homminga J; Hosman AJ; Verdonschot N; Tanck E
    Med Eng Phys; 2014 Jul; 36(7):944-8. PubMed ID: 24736018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty.
    Matsuura Y; Giambini H; Ogawa Y; Fang Z; Thoreson AR; Yaszemski MJ; Lu L; An KN
    Spine (Phila Pa 1976); 2014 Oct; 39(22):E1291-6. PubMed ID: 25077904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.
    Boger A; Bohner M; Heini P; Schwieger K; Schneider E
    Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.