BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 17713795)

  • 21. Short- and long-term effects of vertebroplastic bone cement on cancellous bone.
    Quan R; Ni Y; Zhang L; Xu J; Zheng X; Yang D
    J Mech Behav Biomed Mater; 2014 Jul; 35():102-10. PubMed ID: 24762857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of calcium phosphate cement for the augmentation of traumatically fractured porcine specimens using vertebroplasty.
    Tarsuslugil SM; O'Hara RM; Dunne NJ; Buchanan FJ; Orr JF; Barton DC; Wilcox RK
    J Biomech; 2013 Feb; 46(4):711-5. PubMed ID: 23261249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanical behavior of MRI-signal-inducing bone cements after vertebroplasty in osteoporotic vertebral bodies: An experimental cadaver study.
    Wichlas F; Trzenschik H; Tsitsilonis S; Rohlmann A; Bail HJ
    Clin Biomech (Bristol, Avon); 2014 May; 29(5):571-6. PubMed ID: 24703828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Augmentation of mechanical properties in osteoporotic vertebral bones--a biomechanical investigation of vertebroplasty efficacy with different bone cements.
    Heini PF; Berlemann U; Kaufmann M; Lippuner K; Fankhauser C; van Landuyt P
    Eur Spine J; 2001 Apr; 10(2):164-71. PubMed ID: 11345639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical changes after the augmentation of experimental osteoporotic vertebral compression fractures in the cadaveric thoracic spine.
    Kayanja MM; Togawa D; Lieberman IH
    Spine J; 2005; 5(1):55-63. PubMed ID: 15653085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model.
    Turner TM; Urban RM; Singh K; Hall DJ; Renner SM; Lim TH; Tomlinson MJ; An HS
    Spine J; 2008; 8(3):482-7. PubMed ID: 18455113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vertebroplasty: only small cement volumes are required to normalize stress distributions on the vertebral bodies.
    Luo J; Daines L; Charalambous A; Adams MA; Annesley-Williams DJ; Dolan P
    Spine (Phila Pa 1976); 2009 Dec; 34(26):2865-73. PubMed ID: 20010394
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical effects of unipedicular vertebroplasty on intact vertebrae.
    Higgins KB; Harten RD; Langrana NA; Reiter MF
    Spine (Phila Pa 1976); 2003 Jul; 28(14):1540-7; discussion 1548. PubMed ID: 12865841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vertebroplasty with high-viscosity polymethylmethacrylate cement facilitates vertebral body restoration in vitro.
    Rüger M; Schmoelz W
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2619-25. PubMed ID: 19881400
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Space between bone cement and bony endplate can trigger higher incidence of augmented vertebral collapse: An in-silico study.
    Chen J; Lu S; Chen Y; Zhang X; Xi Z; Xie L; Li J
    J Clin Neurosci; 2024 Jul; 125():152-158. PubMed ID: 38815301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does bone cement in percutaneous vertebroplasty act as a stress riser?
    Aquarius R; van der Zijden AM; Homminga J; Verdonschot N; Tanck E
    Spine (Phila Pa 1976); 2013 Nov; 38(24):2092-7. PubMed ID: 24026155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences in endplate deformation of the adjacent and augmented vertebra following cement augmentation.
    Hulme PA; Boyd SK; Heini PF; Ferguson SJ
    Eur Spine J; 2009 May; 18(5):614-23. PubMed ID: 19242738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanics of prophylactic vertebral reinforcement.
    Sun K; Liebschner MA
    Spine (Phila Pa 1976); 2004 Jul; 29(13):1428-35; discusssion 1435. PubMed ID: 15223933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of vertebroplasty on endplate subsidence in elderly female spines.
    Nagaraja S; Awada HK; Dreher ML; Bouck JT; Gupta S
    J Neurosurg Spine; 2015 Mar; 22(3):273-82. PubMed ID: 25525963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decreased extrusion of calcium phosphate cement versus high viscosity PMMA cement into spongious bone marrow-an ex vivo and in vivo study in sheep vertebrae.
    Xin L; Bungartz M; Maenz S; Horbert V; Hennig M; Illerhaus B; Günster J; Bossert J; Bischoff S; Borowski J; Schubert H; Jandt KD; Kunisch E; Kinne RW; Brinkmann O
    Spine J; 2016 Dec; 16(12):1468-1477. PubMed ID: 27496285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Augmentation Material Stiffness on Adjacent Vertebrae after Osteoporotic Vertebroplasty Using Finite Element Analysis with Different Loading Methods.
    Cho AR; Cho SB; Lee JH; Kim KH
    Pain Physician; 2015 Nov; 18(6):E1101-10. PubMed ID: 26606023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements.
    Wang ML; Massie J; Perry A; Garfin SR; Kim CW
    Spine J; 2007; 7(4):466-74. PubMed ID: 17630145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modification of PMMA vertebroplasty cement for reduced stiffness by addition of normal saline: a material properties evaluation.
    Schröder C; Nguyen M; Kraxenberger M; Chevalier Y; Melcher C; Wegener B; Birkenmaier C
    Eur Spine J; 2017 Dec; 26(12):3209-3215. PubMed ID: 27942939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body.
    Lin EP; Ekholm S; Hiwatashi A; Westesson PL
    AJNR Am J Neuroradiol; 2004 Feb; 25(2):175-80. PubMed ID: 14970015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration.
    Luo J; Skrzypiec DM; Pollintine P; Adams MA; Annesley-Williams DJ; Dolan P
    Bone; 2007 Apr; 40(4):1110-9. PubMed ID: 17229596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.