BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1058 related articles for article (PubMed ID: 17713930)

  • 1. Secretory carrier membrane protein SCAMP2 and phosphatidylinositol 4,5-bisphosphate interactions in the regulation of dense core vesicle exocytosis.
    Liao H; Ellena J; Liu L; Szabo G; Cafiso D; Castle D
    Biochemistry; 2007 Sep; 46(38):10909-20. PubMed ID: 17713930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of secretory carrier membrane protein SCAMP2 in granule exocytosis.
    Liu L; Guo Z; Tieu Q; Castle A; Castle D
    Mol Biol Cell; 2002 Dec; 13(12):4266-78. PubMed ID: 12475951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CAPS acts at a prefusion step in dense-core vesicle exocytosis as a PIP2 binding protein.
    Grishanin RN; Kowalchyk JA; Klenchin VA; Ann K; Earles CA; Chapman ER; Gerona RR; Martin TF
    Neuron; 2004 Aug; 43(4):551-62. PubMed ID: 15312653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The polybasic sequence in the C2B domain of rabphilin is required for the vesicle docking step in PC12 cells.
    Tsuboi T; Kanno E; Fukuda M
    J Neurochem; 2007 Feb; 100(3):770-9. PubMed ID: 17156129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells.
    Shin OH; Rizo J; Südhof TC
    Nat Neurosci; 2002 Jul; 5(7):649-56. PubMed ID: 12055633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SCAMP2 interacts with Arf6 and phospholipase D1 and links their function to exocytotic fusion pore formation in PC12 cells.
    Liu L; Liao H; Castle A; Zhang J; Casanova J; Szabo G; Castle D
    Mol Biol Cell; 2005 Oct; 16(10):4463-72. PubMed ID: 16030257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secretory carrier membrane proteins interact and regulate trafficking of the organellar (Na+,K+)/H+ exchanger NHE7.
    Lin PJ; Williams WP; Luu Y; Molday RS; Orlowski J; Numata M
    J Cell Sci; 2005 May; 118(Pt 9):1885-97. PubMed ID: 15840657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptotagmin VII modulates the kinetics of dense-core vesicle exocytosis in PC12 cells.
    Tsuboi T; Fukuda M
    Genes Cells; 2007 Apr; 12(4):511-9. PubMed ID: 17397398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G protein betagamma directly regulates SNARE protein fusion machinery for secretory granule exocytosis.
    Blackmer T; Larsen EC; Bartleson C; Kowalchyk JA; Yoon EJ; Preininger AM; Alford S; Hamm HE; Martin TF
    Nat Neurosci; 2005 Apr; 8(4):421-5. PubMed ID: 15778713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perturbation of a very late step of regulated exocytosis by a secretory carrier membrane protein (SCAMP2)-derived peptide.
    Guo Z; Liu L; Cafiso D; Castle D
    J Biol Chem; 2002 Sep; 277(38):35357-63. PubMed ID: 12124380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles.
    Wang CT; Grishanin R; Earles CA; Chang PY; Martin TF; Chapman ER; Jackson MB
    Science; 2001 Nov; 294(5544):1111-5. PubMed ID: 11691996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonredundant function of secretory carrier membrane protein isoforms in dense core vesicle exocytosis.
    Liao H; Zhang J; Shestopal S; Szabo G; Castle A; Castle D
    Am J Physiol Cell Physiol; 2008 Mar; 294(3):C797-809. PubMed ID: 18171723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential properties of GTP- and Ca(2+)-stimulated exocytosis from large dense core vesicles.
    Bai L; Zhu D; Zhou K; Zhou W; Li D; Wang Y; Zhang R; Xu T
    Traffic; 2006 Apr; 7(4):416-28. PubMed ID: 16536740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased plasma membrane localization of O-glycosylation-deficient mutant of synaptotagmin I in PC12 cells.
    Kanno E; Fukuda M
    J Neurosci Res; 2008 Apr; 86(5):1036-43. PubMed ID: 18058942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane position of a basic aromatic peptide that sequesters phosphatidylinositol 4,5 bisphosphate determined by site-directed spin labeling and high-resolution NMR.
    Ellena JF; Moulthrop J; Wu J; Rauch M; Jaysinghne S; Castle JD; Cafiso DS
    Biophys J; 2004 Nov; 87(5):3221-33. PubMed ID: 15315949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual function for Munc-18 in exocytosis of PC12 cells.
    Schütz D; Zilly F; Lang T; Jahn R; Bruns D
    Eur J Neurosci; 2005 May; 21(9):2419-32. PubMed ID: 15932600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the polybasic sequence in the Doc2alpha C2B domain in dense-core vesicle exocytosis in PC12 cells.
    Sato M; Mori Y; Matsui T; Aoki R; Oya M; Yanagihara Y; Fukuda M; Tsuboi T
    J Neurochem; 2010 Jul; 114(1):171-81. PubMed ID: 20403080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of phospholipase C-related but catalytically inactive protein to phosphatidylinositol 4,5-bisphosphate via the PH domain.
    Gao J; Takeuchi H; Zhang Z; Fujii M; Kanematsu T; Hirata M
    Cell Signal; 2009 Jul; 21(7):1180-6. PubMed ID: 19298853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane targeting of the yeast exocyst complex.
    Pleskot R; Cwiklik L; Jungwirth P; Žárský V; Potocký M
    Biochim Biophys Acta; 2015 Jul; 1848(7):1481-9. PubMed ID: 25838123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myelin basic protein as a "PI(4,5)P2-modulin": a new biological function for a major central nervous system protein.
    Musse AA; Gao W; Homchaudhuri L; Boggs JM; Harauz G
    Biochemistry; 2008 Sep; 47(39):10372-82. PubMed ID: 18767817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.