These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 17714262)
81. Transient host paralysis as a means of reducing self-superparasitism in koinobiont endoparasitoids. Desneux N; Barta RJ; Delebecque CJ; Heimpel GE J Insect Physiol; 2009 Apr; 55(4):321-7. PubMed ID: 19162033 [TBL] [Abstract][Full Text] [Related]
82. Increase of the behavioral response to kairomones by the parasitoid wasp Leptopilina heterotoma surviving insecticides. Delpuech JM; Bardon C; Boulétreau M Arch Environ Contam Toxicol; 2005 Aug; 49(2):186-91. PubMed ID: 16082580 [TBL] [Abstract][Full Text] [Related]
83. Role of the lipoxygenase/lyase pathway of host-food plants in the host searching behavior of two parasitoid species, Cotesia glomerata and Cotesia plutellae. Shiojiri K; Ozawa R; Matsui K; Kishimoto K; Kugimiya S; Takabayashi J J Chem Ecol; 2006 May; 32(5):969-79. PubMed ID: 16739017 [TBL] [Abstract][Full Text] [Related]
84. Self-reinforcing spatial patterns enslave evolution in a host-parasitoid system. Savill NJ; Rohani P; Hogeweg P J Theor Biol; 1997 Sep; 188(1):11-20. PubMed ID: 9299306 [TBL] [Abstract][Full Text] [Related]
85. Parasitoid wasps indirectly suppress seed production by stimulating consumption rates of their seed-feeding hosts. Xi X; Eisenhauer N; Sun S J Anim Ecol; 2015 Jul; 84(4):1103-11. PubMed ID: 25803150 [TBL] [Abstract][Full Text] [Related]
86. Resistance of some cultivated Brassicaceae to infestations by Plutella xylostella (Lepidoptera: Plutellidae). Sarfraz M; Dosdall LM; Keddie BA J Econ Entomol; 2007 Feb; 100(1):215-24. PubMed ID: 17370831 [TBL] [Abstract][Full Text] [Related]
87. Remarkable similarity in body mass of a secondary hyperparasitoid Lysibia nana and its primary parasitoid host Cotesia glomerata emerging from cocoons of comparable size. Harvey JA; Vet LE; Witjes LM; Bezemer TM Arch Insect Biochem Physiol; 2006 Mar; 61(3):170-83. PubMed ID: 16482580 [TBL] [Abstract][Full Text] [Related]
88. Factors affecting stem borer parasitoid species diversity and parasitism in cultivated and natural habitats. Mailafiya DM; Le Ru BP; Kairu EW; Calatayud PA; Dupas S Environ Entomol; 2010 Feb; 39(1):57-67. PubMed ID: 20146840 [TBL] [Abstract][Full Text] [Related]
89. Characterization of midgut trypsinogen-like cDNA and enzymatic activity in Plutella xylostella parasitized by Cotesia vestalis or Diadegma semiclausum. Shi M; Huang F; Chen YF; Meng XF; Chen XX Arch Insect Biochem Physiol; 2009 Jan; 70(1):3-17. PubMed ID: 18618770 [TBL] [Abstract][Full Text] [Related]
90. Control of invasive hosts by generalist parasitoids. Magal C; Cosner C; Ruan S; Casas J Math Med Biol; 2008 Mar; 25(1):1-20. PubMed ID: 18445582 [TBL] [Abstract][Full Text] [Related]
91. The effects of kaolin particle film on Plutella xylostella behaviour and development. Barker JE; Fulton A; Evans KA; Powell G Pest Manag Sci; 2006 Jun; 62(6):498-504. PubMed ID: 16602083 [TBL] [Abstract][Full Text] [Related]
92. Modification, by the insecticide chlorpyrifos, of the behavioral response to kairomones of a parasitoid wasp, Leptopilina boulardi. Komeza N; Fouillet P; Boulétreau M; Delpuech JM Arch Environ Contam Toxicol; 2001 Nov; 41(4):436-42. PubMed ID: 11598780 [TBL] [Abstract][Full Text] [Related]
93. Ecological versus phylogenetic determinants of trophic associations in a plant-leafminer-parasitoid food web. Leppänen SA; Altenhofer E; Liston AD; Nyman T Evolution; 2013 May; 67(5):1493-502. PubMed ID: 23617924 [TBL] [Abstract][Full Text] [Related]
94. Terpene-mediated parasitoid host location behavior on transgenic and classically bred apple genotypes. Vogler U; Rott AS; Gessler C; Dorn S J Agric Food Chem; 2009 Aug; 57(15):6630-5. PubMed ID: 19722568 [TBL] [Abstract][Full Text] [Related]
95. The evolution of developmental timing in natural enemy systems. Hackett-Jones E; White A; Cobbold CA J Theor Biol; 2011 Apr; 275(1):1-11. PubMed ID: 21195091 [TBL] [Abstract][Full Text] [Related]
96. Perspectives for the biological control of Cameraria ohridella. Zemek R; Prenerová E; Volter L; Weyda F; Skuhravý V Commun Agric Appl Biol Sci; 2007; 72(3):521-6. PubMed ID: 18399483 [TBL] [Abstract][Full Text] [Related]
97. With or without you: Effects of the concurrent range expansion of an herbivore and its natural enemy on native species interactions. Carrasco D; Desurmont GA; Laplanche D; Proffit M; Gols R; Becher PG; Larsson MC; Turlings TCJ; Anderson P Glob Chang Biol; 2018 Feb; 24(2):631-643. PubMed ID: 28731514 [TBL] [Abstract][Full Text] [Related]
98. Interactions to the fifth trophic level: secondary and tertiary parasitoid wasps show extraordinary efficiency in utilizing host resources. Harvey JA; Wagenaar R; Bezemer TM J Anim Ecol; 2009 May; 78(3):686-92. PubMed ID: 19175445 [TBL] [Abstract][Full Text] [Related]
99. Light brown apple moth in California: a diversity of host plants and indigenous parasitoids. Wang XG; Levy K; Mills NJ; Daane KM Environ Entomol; 2012 Feb; 41(1):81-90. PubMed ID: 22525062 [TBL] [Abstract][Full Text] [Related]
100. Native parasitoids and their potential to control the invasive leafminer, Cameraria ohridella DESCH. & DIM. (Lep.: Gracillariidae). Klug T; Meyhöfer R; Kreye M; Hommes M Bull Entomol Res; 2008 Aug; 98(4):379-87. PubMed ID: 18294419 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]