These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 17714723)

  • 1. Wetting behavior of a SiO(2)-polystyrene nanocomposite surface.
    Hou W; Wang Q
    J Colloid Interface Sci; 2007 Dec; 316(1):206-9. PubMed ID: 17714723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV-driven reversible switching of a polystyrene/titania nanocomposite coating between superhydrophobicity and superhydrophilicity.
    Hou W; Wang Q
    Langmuir; 2009 Jun; 25(12):6875-9. PubMed ID: 19388630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From superhydrophilicity to superhydrophobicity: the wetting behavior of a methylsilicone/phenolic resin/silica composite surface.
    Hou W; Wang Q
    Langmuir; 2007 Sep; 23(19):9695-8. PubMed ID: 17691747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure.
    Ran C; Ding G; Liu W; Deng Y; Hou W
    Langmuir; 2008 Sep; 24(18):9952-5. PubMed ID: 18702472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Cassie-Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface.
    Bormashenko E; Pogreb R; Whyman G; Erlich M
    Langmuir; 2007 Nov; 23(24):12217-21. PubMed ID: 17956134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair?
    Bormashenko E; Pogreb R; Whyman G; Erlich M
    Langmuir; 2007 Jun; 23(12):6501-3. PubMed ID: 17497815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct method of tracing the wetting states on nanocomposite surfaces.
    Wang KK; Yan H; Zhao CX; Xu G; Qi Y; Wu Y; Hu NX
    Langmuir; 2010 Jun; 26(11):7686-9. PubMed ID: 20459112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition.
    Bormashenko E; Bormashenko Y; Stein T; Whyman G; Bormashenko E
    J Colloid Interface Sci; 2007 Jul; 311(1):212-6. PubMed ID: 17359990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.
    Nosonovsky M; Bhushan B
    Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the superhydrophobic behavior for underwater surfaces using impedance-based methods.
    Tuberquia JC; Song WS; Jennings GK
    Anal Chem; 2011 Aug; 83(16):6184-90. PubMed ID: 21696148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Condensation and wetting transitions on microstructured ultra-hydrophobic surfaces.
    Dorrer C; RĂ¼he J
    Langmuir; 2007 Mar; 23(7):3820-4. PubMed ID: 17311432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of geometrical characteristics of surface roughness on droplet wetting.
    Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A facile strategy for controlling the self-assembly of nanocomposite particles based on colloidal steric stabilization theory.
    Wu Q; Wang Z; Kong X; Gu X; Xue G
    Langmuir; 2008 Aug; 24(15):7778-84. PubMed ID: 18590290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase behavior of polystyrene-brush-coated nanoparticles in cyclohexane.
    Kaiser A; Schmidt AM
    J Phys Chem B; 2008 Feb; 112(7):1894-8. PubMed ID: 18217745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching.
    Yan L; Wang K; Wu J; Ye L
    J Phys Chem B; 2006 Jun; 110(23):11241-6. PubMed ID: 16771391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials.
    Park CI; Jeong HE; Lee SH; Cho HS; Suh KY
    J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobicity and superhydrophilicity of regular nanopatterns.
    Martines E; Seunarine K; Morgan H; Gadegaard N; Wilkinson CD; Riehle MO
    Nano Lett; 2005 Oct; 5(10):2097-103. PubMed ID: 16218745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of nanoparticle embedding into the surface of a polymer melt.
    Deshmukh RD; Composto RJ
    Langmuir; 2007 Dec; 23(26):13169-73. PubMed ID: 18020383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid reversible superhydrophobicity-to-superhydrophilicity transition on alternating current etched brass.
    Wang Z; Zhu L; Li W; Liu H
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4808-14. PubMed ID: 23627251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetting behavior of lightly sulfonated polystyrene ionomers on silica surfaces.
    Zhai X; Weiss RA
    Langmuir; 2008 Nov; 24(22):12928-35. PubMed ID: 18942867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.