These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Effect of Evaporation on Imbibition and Related Capillary Phenomena (Composite Menisci). Princen HM J Colloid Interface Sci; 1997 Mar; 187(2):520-8. PubMed ID: 9073429 [TBL] [Abstract][Full Text] [Related]
7. Effect of capillary element aspect ratio on the dynamic imbibition within porous networks. Ridgway CJ; Gane PA; Schoelkopf J J Colloid Interface Sci; 2002 Aug; 252(2):373-82. PubMed ID: 16290802 [TBL] [Abstract][Full Text] [Related]
8. Colloid retention at the meniscus-wall contact line in an open microchannel. Zevi Y; Gao B; Zhang W; Morales VL; Cakmak ME; Medrano EA; Sang W; Steenhuis TS Water Res; 2012 Feb; 46(2):295-306. PubMed ID: 22130000 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous Imbibition of Capillaries under the End Effect and Wetting Hysteresis. Zhang L; Wang K; An H; Li G; Su Y; Zhang W; Yang X ACS Omega; 2022 Feb; 7(5):4363-4371. PubMed ID: 35155929 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of capillary imbibition when surfactant, polymer, and hot water are used as aqueous phase for oil recovery. Babadagli T J Colloid Interface Sci; 2002 Feb; 246(1):203-13. PubMed ID: 16290401 [TBL] [Abstract][Full Text] [Related]
11. Forced and spontaneous imbibition of surfactant solution into an oil-wet capillary: the effects of surfactant diffusion ahead of the advancing meniscus. Hammond PS; Unsal E Langmuir; 2010 May; 26(9):6206-21. PubMed ID: 20225818 [TBL] [Abstract][Full Text] [Related]
12. Immiscible displacement of oil by water in consolidated porous media due to capillary imbibition under ultrasonic waves. Hamida T; Babadagli T J Acoust Soc Am; 2007 Sep; 122(3):1539. PubMed ID: 17927413 [TBL] [Abstract][Full Text] [Related]
13. Spontaneous and forced imbibition of aqueous wettability altering surfactant solution into an initially oil-wet capillary. Hammond PS; Unsal E Langmuir; 2009 Nov; 25(21):12591-603. PubMed ID: 19673494 [TBL] [Abstract][Full Text] [Related]
14. Prediction of imbibition in unconsolidated granular materials. Gladkikh M; Bryant S J Colloid Interface Sci; 2005 Aug; 288(2):526-39. PubMed ID: 15927623 [TBL] [Abstract][Full Text] [Related]
15. Scaling of spontaneous imbibition data with wettability included. Li K J Contam Hydrol; 2007 Jan; 89(3-4):218-30. PubMed ID: 17081652 [TBL] [Abstract][Full Text] [Related]
16. Experimental investigation on spontaneous counter-current imbibition in water-wet natural reservoir sandstone core using MRI. Zhao Y; Song Y Magn Reson Chem; 2017 Jun; 55(6):546-552. PubMed ID: 27943423 [TBL] [Abstract][Full Text] [Related]
17. Experimental investigation of dynamic contact angle and capillary rise in tubes with circular and noncircular cross sections. Heshmati M; Piri M Langmuir; 2014 Dec; 30(47):14151-62. PubMed ID: 25323811 [TBL] [Abstract][Full Text] [Related]
18. Capillary imbibition of surfactant solutions in porous media and thin capillaries: partial wetting case. Starov VM; Zhdanov SA; Velarde MG J Colloid Interface Sci; 2004 May; 273(2):589-95. PubMed ID: 15082398 [TBL] [Abstract][Full Text] [Related]
19. A level set method for determining critical curvatures for drainage and imbibition. Prodanović M; Bryant SL J Colloid Interface Sci; 2006 Dec; 304(2):442-58. PubMed ID: 17027812 [TBL] [Abstract][Full Text] [Related]
20. Capillary rise in nanotubes coated with polymer brushes. Dimitrov DI; Milchev A; Binder K Ann N Y Acad Sci; 2009 Apr; 1161():537-48. PubMed ID: 19426346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]