These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
498 related articles for article (PubMed ID: 17714813)
1. Utility of lipid biomarkers in support of bioremediation efforts at army sites. Ringelberg D; Richmond M; Foley K; Reynolds C J Microbiol Methods; 2008 Jul; 74(1):17-25. PubMed ID: 17714813 [TBL] [Abstract][Full Text] [Related]
2. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance (14)C analysis of PLFA. Cowie BR; Greenberg BM; Slater GF Environ Sci Technol; 2010 Apr; 44(7):2322-7. PubMed ID: 20196610 [TBL] [Abstract][Full Text] [Related]
3. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site. Chang W; Klemm S; Beaulieu C; Hawari J; Whyte L; Ghoshal S Environ Sci Technol; 2011 Feb; 45(3):1061-6. PubMed ID: 21194195 [TBL] [Abstract][Full Text] [Related]
4. Ex situ bioremediation of oil-contaminated soil. Lin TC; Pan PT; Cheng SS J Hazard Mater; 2010 Apr; 176(1-3):27-34. PubMed ID: 20053499 [TBL] [Abstract][Full Text] [Related]
5. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time. Margesin R; Hämmerle M; Tscherko D Microb Ecol; 2007 Feb; 53(2):259-69. PubMed ID: 17265002 [TBL] [Abstract][Full Text] [Related]
6. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study. Trindade PV; Sobral LG; Rizzo AC; Leite SG; Soriano AU Chemosphere; 2005 Jan; 58(4):515-22. PubMed ID: 15620743 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a contaminated vadose zone. Ronen Z; Yanovich Y; Goldin R; Adar E Chemosphere; 2008 Nov; 73(9):1492-8. PubMed ID: 18774159 [TBL] [Abstract][Full Text] [Related]
8. Microbial community response to petroleum hydrocarbon contamination in the unsaturated zone at the experimental field site Vaerløse, Denmark. Kaufmann K; Christophersen M; Buttler A; Harms H; Höhener P FEMS Microbiol Ecol; 2004 Jun; 48(3):387-99. PubMed ID: 19712308 [TBL] [Abstract][Full Text] [Related]
9. Effect of soil organic matter on petroleum hydrocarbon degradation in diesel/fuel oil-contaminated soil. Chen YA; Grace Liu PW; Whang LM; Wu YJ; Cheng SS J Biosci Bioeng; 2020 May; 129(5):603-612. PubMed ID: 31992527 [TBL] [Abstract][Full Text] [Related]
10. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste. Mikkonen A; Hakala KP; Lappi K; Kondo E; Vaalama A; Suominen L Environ Pollut; 2012 Mar; 162():374-80. PubMed ID: 22243888 [TBL] [Abstract][Full Text] [Related]
11. Mass transfer and hydrocarbon biodegradation of aged soil in slurry phase. García-Rivero M; Saucedo-Castañeda G; Flores De Hoyos S; Gutiérrez-Rojas M Biotechnol Prog; 2002; 18(4):728-33. PubMed ID: 12153305 [TBL] [Abstract][Full Text] [Related]
12. Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils. Yao HY; Liu YY; Xue D; Huang CY J Environ Sci (China); 2006; 18(3):503-9. PubMed ID: 17294647 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX. Kabelitz N; Machackova J; Imfeld G; Brennerova M; Pieper DH; Heipieper HJ; Junca H Appl Microbiol Biotechnol; 2009 Mar; 82(3):565-77. PubMed ID: 19172262 [TBL] [Abstract][Full Text] [Related]
14. Isolation and characterization of bacteria from crude petroleum oil contaminated soil and their potential to degrade diesel fuel. Saadoun I J Basic Microbiol; 2002; 42(6):420-8. PubMed ID: 12442304 [TBL] [Abstract][Full Text] [Related]
15. Biodegradation of aged diesel in diverse soil matrixes: impact of environmental conditions and bioavailability on microbial remediation capacity. Sutton NB; van Gaans P; Langenhoff AA; Maphosa F; Smidt H; Grotenhuis T; Rijnaarts HH Biodegradation; 2013 Jul; 24(4):487-98. PubMed ID: 23242513 [TBL] [Abstract][Full Text] [Related]
16. Effect of nickel on the mineralization of hydrocarbons by indigenous microbiota in Kuwait soils. Al-Saleh ES; Obuekwe C J Basic Microbiol; 2009 Jun; 49(3):256-63. PubMed ID: 19219899 [TBL] [Abstract][Full Text] [Related]
17. Pressurized liquid extraction of soil microbial phospholipid and neutral lipid fatty acids. White PM; Potter TL; Strickland TC J Agric Food Chem; 2009 Aug; 57(16):7171-7. PubMed ID: 19624130 [TBL] [Abstract][Full Text] [Related]
18. Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system. Wang SY; Kuo YC; Hong A; Chang YM; Kao CM Chemosphere; 2016 Dec; 164():558-567. PubMed ID: 27627466 [TBL] [Abstract][Full Text] [Related]
19. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. Stroud JL; Paton GI; Semple KT J Appl Microbiol; 2007 May; 102(5):1239-53. PubMed ID: 17448159 [TBL] [Abstract][Full Text] [Related]
20. Effects of co-contamination of heavy metals and total petroleum hydrocarbons on soil bacterial community and function network reconstitution. Li Q; You P; Hu Q; Leng B; Wang J; Chen J; Wan S; Wang B; Yuan C; Zhou R; Ouyang K Ecotoxicol Environ Saf; 2020 Nov; 204():111083. PubMed ID: 32791359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]