BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 17714929)

  • 1. Recovery of nickel, cobalt and some salts from spent Ni-MH batteries.
    Rabah MA; Farghaly FE; Abd-El Motaleb MA
    Waste Manag; 2008; 28(7):1159-67. PubMed ID: 17714929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and leaching of NiCd and NiMH spent batteries for the recovery of metals.
    Pietrelli L; Bellomo B; Fontana D; Montereali M
    Waste Manag; 2005; 25(2):221-6. PubMed ID: 15737722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone.
    Jha MK; Kumari A; Jha AK; Kumar V; Hait J; Pandey BD
    Waste Manag; 2013 Sep; 33(9):1890-7. PubMed ID: 23773705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant.
    Li L; Ge J; Wu F; Chen R; Chen S; Wu B
    J Hazard Mater; 2010 Apr; 176(1-3):288-93. PubMed ID: 19954882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioleaching of spent Ni-Cd batteries by continuous flow system: effect of hydraulic retention time and process load.
    Zhao L; Yang D; Zhu NW
    J Hazard Mater; 2008 Dec; 160(2-3):648-54. PubMed ID: 18430515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.
    Rabah MA
    Waste Manag; 2004; 24(2):119-26. PubMed ID: 14761750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of rare metal compounds from nickel-metal hydride battery waste and their application to CH4 dry reforming catalyst.
    Kanamori T; Matsuda M; Miyake M
    J Hazard Mater; 2009 Sep; 169(1-3):240-5. PubMed ID: 19395161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The BATINTREC process for reclaiming used batteries.
    Xia YQ; Li GJ
    Waste Manag; 2004; 24(4):359-63. PubMed ID: 15081063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of metals from Cuban nickel tailings by leaching with organic acids followed by precipitation and magnetic separation.
    Hernández CM; Banza AN; Gock E
    J Hazard Mater; 2007 Jan; 139(1):25-30. PubMed ID: 17084523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.
    Tanong K; Coudert L; Mercier G; Blais JF
    J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissolution and characterization of HEV NiMH batteries.
    Larsson K; Ekberg C; Ødegaard-Jensen A
    Waste Manag; 2013 Mar; 33(3):689-98. PubMed ID: 22796014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium.
    Valverde IM; Paulino JF; Afonso JC
    J Hazard Mater; 2008 Dec; 160(2-3):310-7. PubMed ID: 18400377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans.
    Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH
    Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning.
    Vegliò F; Quaresima R; Fornari P; Ubaldini S
    Waste Manag; 2003; 23(3):245-52. PubMed ID: 12737966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.
    Kim HI; Park KH; Mishra D
    J Hazard Mater; 2009 Jul; 166(2-3):1540-4. PubMed ID: 19121897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protecting health.
    Armour MA; Linetsky A; Ashick D
    Ann N Y Acad Sci; 2008 Oct; 1140():425-30. PubMed ID: 18991943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.
    Nogueira CA; Margarido F
    Environ Technol; 2012; 33(1-3):359-66. PubMed ID: 22519122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of spent nickel-metal hydride batteries and a preliminary economic evaluation of the recovery processes.
    Lin SL; Huang KL; Wang IC; Chou IC; Kuo YM; Hung CH; Lin C
    J Air Waste Manag Assoc; 2016 Mar; 66(3):296-306. PubMed ID: 26651506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of heavy metal leaching from spent household batteries disposed in municipal solid waste.
    Karnchanawong S; Limpiteeprakan P
    Waste Manag; 2009 Feb; 29(2):550-8. PubMed ID: 18562190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.