BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17714975)

  • 1. Computational representation and hemodynamic characterization of in vivo acquired severe stenotic renal artery geometries using turbulence modeling.
    Kagadis GC; Skouras ED; Bourantas GC; Paraskeva CA; Katsanos K; Karnabatidis D; Nikiforidis GC
    Med Eng Phys; 2008 Jun; 30(5):647-60. PubMed ID: 17714975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.
    Dwyer HA; Matthews PB; Azadani A; Jaussaud N; Ge L; Guy TS; Tseng EE
    Interact Cardiovasc Thorac Surg; 2009 Aug; 9(2):301-8. PubMed ID: 19414489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models.
    Tan FP; Soloperto G; Bashford S; Wood NB; Thom S; Hughes A; Xu XY
    J Biomech Eng; 2008 Dec; 130(6):061008. PubMed ID: 19045537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamics in Transplant Renal Artery Stenosis and its Alteration after Stent Implantation Based on a Patient-specific Computational Fluid Dynamics Model.
    Wang HY; Liu LS; Cao HM; Li J; Deng RH; Fu Q; Zhang HX; Fei JG; Wang CX
    Chin Med J (Engl); 2017 5th Jan 2017; 130(1):23-31. PubMed ID: 28051019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Blood flow in a renal artery with a deformed vessel wall].
    Kozhevnikov AA; Arabidze GG; Matveeva LS
    Biofizika; 1977; 22(2):318-22. PubMed ID: 861271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vortex formation and recirculation zones in left anterior descending artery stenoses: computational fluid dynamics analysis.
    Katritsis DG; Theodorakakos A; Pantos I; Andriotis A; Efstathopoulos EP; Siontis G; Karcanias N; Redwood S; Gavaises M
    Phys Med Biol; 2010 Mar; 55(5):1395-411. PubMed ID: 20150685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modelling of simulated blood flow in idealized composite arterial coronary grafts: transient flow.
    Politis AK; Stavropoulos GP; Christolis MN; Panagopoulos PG; Vlachos NS; Markatos NC
    J Biomech; 2008; 41(1):25-39. PubMed ID: 17905256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The haemodynamic effects of renal artery stenosis (author's transl)].
    Pemsel HK; Thermann M
    Rofo; 1978 Aug; 129(2):189-92. PubMed ID: 151012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamic analysis of renal artery stenosis using computational fluid dynamics technology based on unenhanced steady-state free precession magnetic resonance angiography: preliminary results.
    Zhang W; Qian Y; Lin J; Lv P; Karunanithi K; Zeng M
    Int J Cardiovasc Imaging; 2014 Feb; 30(2):367-75. PubMed ID: 24318538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary study of hemodynamic distribution in patient-specific stenotic carotid bifurcation by image-based computational fluid dynamics.
    Xue YJ; Gao PY; Duan Q; Lin Y; Dai CB
    Acta Radiol; 2008 Jun; 49(5):558-65. PubMed ID: 18568543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turbulence modeling in three-dimensional stenosed arterial bifurcations.
    Banks J; Bressloff NW
    J Biomech Eng; 2007 Feb; 129(1):40-50. PubMed ID: 17227097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational hemodynamics in the human aorta: a computational fluid dynamics study of three cases with patient-specific geometries and inflow rates.
    Karmonik C; Bismuth JX; Davies MG; Lumsden AB
    Technol Health Care; 2008; 16(5):343-54. PubMed ID: 19126973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements.
    Rayz VL; Boussel L; Acevedo-Bolton G; Martin AJ; Young WL; Lawton MT; Higashida R; Saloner D
    J Biomech Eng; 2008 Oct; 130(5):051011. PubMed ID: 19045518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-dependent 3D simulations of the hemodynamics in a stented coronary artery.
    Faik I; Mongrain R; Leask RL; Rodes-Cabau J; Larose E; Bertrand O
    Biomed Mater; 2007 Mar; 2(1):S28-37. PubMed ID: 18458417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boundary conditions in simulation of stenosed coronary arteries.
    Mohammadi H; Bahramian F
    Cardiovasc Eng; 2009 Sep; 9(3):83-91. PubMed ID: 19688262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery.
    Sun N; Torii R; Wood NB; Hughes AD; Thom SA; Xu XY
    J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular cell adhesion molecule-1 expression in endothelial cells exposed to physiological coronary wall shear stresses.
    O'Keeffe LM; Muir G; Piterina AV; McGloughlin T
    J Biomech Eng; 2009 Aug; 131(8):081003. PubMed ID: 19604015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulations of pulsatile flow in an end-to-side anastomosis model.
    Shaik E; Hoffmann KA; Dietiker JF
    Mol Cell Biomech; 2007 Mar; 4(1):41-53. PubMed ID: 17879770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamics-analysis of the Niagara hemodialysis catheter in a right heart model.
    Mareels G; De Wachter DS; Verdonck PR
    Artif Organs; 2004 Jul; 28(7):639-48. PubMed ID: 15209857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.