These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17715191)

  • 21. Exercise and sleep in aging: emphasis on serotonin.
    Melancon MO; Lorrain D; Dionne IJ
    Pathol Biol (Paris); 2014 Oct; 62(5):276-83. PubMed ID: 25104243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Somatodendritic and axonal anatomy of intracellularly labeled serotonergic neurons in the rat medulla.
    Gao K; Mason P
    J Comp Neurol; 1997 Dec; 389(2):309-28. PubMed ID: 9416924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationship of presympathetic-premotor neurons to the serotonergic transmitter system in the rat brainstem.
    Kerman IA; Shabrang C; Taylor L; Akil H; Watson SJ
    J Comp Neurol; 2006 Dec; 499(6):882-96. PubMed ID: 17072838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role for raphe magnus neuronal responses in the behavioral reactions to colorectal distension.
    Brink TS; Mason P
    J Neurophysiol; 2004 Oct; 92(4):2302-11. PubMed ID: 15175367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of medullary raphe serotonergic neurons has age-dependent effects on the CO2 response in newborn piglets.
    Messier ML; Li A; Nattie EE
    J Appl Physiol (1985); 2004 May; 96(5):1909-19. PubMed ID: 14752121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of medullary GABAergic and serotonergic raphe neurons in respiratory control: electrophysiological and immunohistochemical studies in rats.
    Cao Y; Matsuyama K; Fujito Y; Aoki M
    Neurosci Res; 2006 Nov; 56(3):322-31. PubMed ID: 16962678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Raphe magnus neurons respond to noxious colorectal distension.
    Brink TS; Mason P
    J Neurophysiol; 2003 May; 89(5):2506-15. PubMed ID: 12612047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nuclear organization of the serotonergic system in the brain of the rock cavy (Kerodon rupestris).
    Soares JG; Cavalcanti JR; Oliveira FG; Pontes AL; Sousa TB; Freitas LM; Cavalcante JS; Nascimento ES; Cavalcante JC; Costa MS
    J Chem Neuroanat; 2012 Mar; 43(2):112-9. PubMed ID: 22464977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Serotonergic neurons of the caudal raphe nuclei activated in response to hemorrhage in the rat.
    Dean C; Woyach VL
    Brain Res; 2004 Oct; 1025(1-2):159-68. PubMed ID: 15464756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of the raphe in the respiratory effects of gigantocellular area activation.
    Richard CA; Stremel RW
    Brain Res Bull; 1990 Jul; 25(1):19-23. PubMed ID: 2207708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia.
    Coimbra NC; De Oliveira R; Freitas RL; Ribeiro SJ; Borelli KG; Pacagnella RC; Moreira JE; da Silva LA; Melo LL; Lunardi LO; Brandão ML
    Exp Neurol; 2006 Jan; 197(1):93-112. PubMed ID: 16303128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activity of medullary serotonergic neurons in freely moving animals.
    Jacobs BL; Martín-Cora FJ; Fornal CA
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):45-52. PubMed ID: 12589905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential effects of neonatal hypoxic-ischemic brain injury on brainstem serotonergic raphe nuclei.
    Reinebrant HE; Wixey JA; Gobe GC; Colditz PB; Buller KM
    Brain Res; 2010 Mar; 1322():124-33. PubMed ID: 20122905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice.
    Sakai K
    Neuroscience; 2011 Dec; 197():200-24. PubMed ID: 21958868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discharge properties of neurons of the median raphe nucleus during hippocampal theta rhythm in the rat.
    Viana Di Prisco G; Albo Z; Vertes RP; Kocsis B
    Exp Brain Res; 2002 Aug; 145(3):383-94. PubMed ID: 12136388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Onset of the Fetal Respiratory Rhythm: An Emergent Property Triggered by Chemosensory Drive?
    Beltrán-Castillo S; Morgado-Valle C; Eugenín J
    Adv Exp Med Biol; 2017; 1015():163-192. PubMed ID: 29080027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hebbian covariance learning. A nexus for respiratory variability, memory, and optimization?
    Young DL; Poon CS
    Adv Exp Med Biol; 1998; 450():73-83. PubMed ID: 10026966
    [No Abstract]   [Full Text] [Related]  

  • 38. Cell type-specific dissection of sensory pathways involved in descending modulation.
    Nguyen E; Grajales-Reyes JG; Gereau RW; Ross SE
    Trends Neurosci; 2023 Jul; 46(7):539-550. PubMed ID: 37164868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeted anatomical and functional identification of antinociceptive and pronociceptive serotonergic neurons that project to the spinal dorsal horn.
    Ganley RP; de Sousa MM; Werder K; Öztürk T; Mendes R; Ranucci M; Wildner H; Zeilhofer HU
    Elife; 2023 Feb; 12():. PubMed ID: 36752606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Medullary kappa-opioid receptor neurons inhibit pain and itch through a descending circuit.
    Nguyen E; Smith KM; Cramer N; Holland RA; Bleimeister IH; Flores-Felix K; Silberberg H; Keller A; Le Pichon CE; Ross SE
    Brain; 2022 Jul; 145(7):2586-2601. PubMed ID: 35598161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.