These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Novel BAC Mouse Model of Huntington's Disease with 225 CAG Repeats Exhibits an Early Widespread and Stable Degenerative Phenotype. Wegrzynowicz M; Bichell TJ; Soares BD; Loth MK; McGlothan JS; Mori S; Alikhan FS; Hua K; Coughlin JM; Holt HK; Jetter CS; Pomper MG; Osmand AP; Guilarte TR; Bowman AB J Huntingtons Dis; 2015; 4(1):17-36. PubMed ID: 26333255 [TBL] [Abstract][Full Text] [Related]
4. A critical window of CAG repeat-length correlates with phenotype severity in the R6/2 mouse model of Huntington's disease. Cummings DM; Alaghband Y; Hickey MA; Joshi PR; Hong SC; Zhu C; Ando TK; André VM; Cepeda C; Watson JB; Levine MS J Neurophysiol; 2012 Jan; 107(2):677-91. PubMed ID: 22072510 [TBL] [Abstract][Full Text] [Related]
5. Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington's disease knock-in mice. Menalled LB; Sison JD; Wu Y; Olivieri M; Li XJ; Li H; Zeitlin S; Chesselet MF J Neurosci; 2002 Sep; 22(18):8266-76. PubMed ID: 12223581 [TBL] [Abstract][Full Text] [Related]
6. Sex differences in behavior and striatal ascorbate release in the 140 CAG knock-in mouse model of Huntington's disease. Dorner JL; Miller BR; Barton SJ; Brock TJ; Rebec GV Behav Brain Res; 2007 Mar; 178(1):90-7. PubMed ID: 17239451 [TBL] [Abstract][Full Text] [Related]
7. Longitudinal behavioral, cross-sectional transcriptional and histopathological characterization of a knock-in mouse model of Huntington's disease with 140 CAG repeats. Rising AC; Xu J; Carlson A; Napoli VV; Denovan-Wright EM; Mandel RJ Exp Neurol; 2011 Apr; 228(2):173-82. PubMed ID: 21192926 [TBL] [Abstract][Full Text] [Related]
8. Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington's disease with 140 CAG repeats. Menalled LB; Sison JD; Dragatsis I; Zeitlin S; Chesselet MF J Comp Neurol; 2003 Oct; 465(1):11-26. PubMed ID: 12926013 [TBL] [Abstract][Full Text] [Related]
9. Neurological abnormalities in a knock-in mouse model of Huntington's disease. Lin CH; Tallaksen-Greene S; Chien WM; Cearley JA; Jackson WS; Crouse AB; Ren S; Li XJ; Albin RL; Detloff PJ Hum Mol Genet; 2001 Jan; 10(2):137-44. PubMed ID: 11152661 [TBL] [Abstract][Full Text] [Related]
10. Longitudinal analysis of the behavioural phenotype in Hdh(CAG)150 Huntington's disease knock-in mice. Brooks S; Higgs G; Jones L; Dunnett SB Brain Res Bull; 2012 Jun; 88(2-3):182-8. PubMed ID: 20457230 [TBL] [Abstract][Full Text] [Related]
11. Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease. Reddy PH; Charles V; Williams M; Miller G; Whetsell WO; Tagle DA Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1035-45. PubMed ID: 10434303 [TBL] [Abstract][Full Text] [Related]
12. Early onset deficits on the delayed alternation task in the Hdh(Q92) knock-in mouse model of Huntington's disease. Trueman RC; Jones L; Dunnett SB; Brooks SP Brain Res Bull; 2012 Jun; 88(2-3):156-62. PubMed ID: 21440047 [TBL] [Abstract][Full Text] [Related]
14. Age-dependent changes in the calcium sensitivity of striatal mitochondria in mouse models of Huntington's Disease. Brustovetsky N; LaFrance R; Purl KJ; Brustovetsky T; Keene CD; Low WC; Dubinsky JM J Neurochem; 2005 Jun; 93(6):1361-70. PubMed ID: 15935052 [TBL] [Abstract][Full Text] [Related]
15. A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice. Hölter SM; Stromberg M; Kovalenko M; Garrett L; Glasl L; Lopez E; Guide J; Götz A; Hans W; Becker L; Rathkolb B; Rozman J; Schrewed A; Klingenspor M; Klopstock T; Schulz H; Wolf E; Wursta W; Gillis T; Wakimoto H; Seidman J; MacDonald ME; Cotman S; Gailus-Durner V; Fuchs H; de Angelis MH; Lee JM; Wheeler VC PLoS One; 2013; 8(11):e80923. PubMed ID: 24278347 [TBL] [Abstract][Full Text] [Related]
16. Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length. Hansson O; Castilho RF; Korhonen L; Lindholm D; Bates GP; Brundin P J Neurochem; 2001 Aug; 78(4):694-703. PubMed ID: 11520890 [TBL] [Abstract][Full Text] [Related]
17. Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum. Wheeler VC; Lebel LA; Vrbanac V; Teed A; te Riele H; MacDonald ME Hum Mol Genet; 2003 Feb; 12(3):273-81. PubMed ID: 12554681 [TBL] [Abstract][Full Text] [Related]
18. Striatal atrophy and dendritic alterations in a knock-in mouse model of Huntington's disease. Lerner RP; Trejo Martinez Ldel C; Zhu C; Chesselet MF; Hickey MA Brain Res Bull; 2012 Apr; 87(6):571-8. PubMed ID: 22326483 [TBL] [Abstract][Full Text] [Related]
19. A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington's Disease. Yhnell E; Dunnett SB; Brooks SP J Huntingtons Dis; 2016 May; 5(2):149-61. PubMed ID: 27258586 [TBL] [Abstract][Full Text] [Related]
20. The p75 neurotrophin receptor augments survival signaling in the striatum of pre-symptomatic Q175(WT/HD) mice. Wehner AB; Milen AM; Albin RL; Pierchala BA Neuroscience; 2016 Jun; 324():297-306. PubMed ID: 26947127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]