These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 17715336)
61. Loss of striatal 90-kDa ribosomal S6 kinase (Rsk) is a key factor for motor, synaptic and transcription dysfunction in Huntington's disease. Anglada-Huguet M; Giralt A; Rué L; Alberch J; Xifró X Biochim Biophys Acta; 2016 Jul; 1862(7):1255-66. PubMed ID: 27063456 [TBL] [Abstract][Full Text] [Related]
62. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. Tong X; Ao Y; Faas GC; Nwaobi SE; Xu J; Haustein MD; Anderson MA; Mody I; Olsen ML; Sofroniew MV; Khakh BS Nat Neurosci; 2014 May; 17(5):694-703. PubMed ID: 24686787 [TBL] [Abstract][Full Text] [Related]
63. A selective inhibitor of histone deacetylase 3 prevents cognitive deficits and suppresses striatal CAG repeat expansions in Huntington's disease mice. Suelves N; Kirkham-McCarthy L; Lahue RS; Ginés S Sci Rep; 2017 Jul; 7(1):6082. PubMed ID: 28729730 [TBL] [Abstract][Full Text] [Related]
64. Centrosome disorganization in fibroblast cultures derived from R6/2 Huntington's disease (HD) transgenic mice and HD patients. Sathasivam K; Woodman B; Mahal A; Bertaux F; Wanker EE; Shima DT; Bates GP Hum Mol Genet; 2001 Oct; 10(21):2425-35. PubMed ID: 11689489 [TBL] [Abstract][Full Text] [Related]
66. Progressive imbalance in the interaction between spatial and procedural memory systems in the R6/2 mouse model of Huntington's disease. Ciamei A; Morton AJ Neurobiol Learn Mem; 2009 Oct; 92(3):417-28. PubMed ID: 19524696 [TBL] [Abstract][Full Text] [Related]
67. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington's disease. Stanek LM; Yang W; Angus S; Sardi PS; Hayden MR; Hung GH; Bennett CF; Cheng SH; Shihabuddin LS J Huntingtons Dis; 2013; 2(2):217-28. PubMed ID: 25063516 [TBL] [Abstract][Full Text] [Related]
68. Dopamine-dependent long term potentiation in the dorsal striatum is reduced in the R6/2 mouse model of Huntington's disease. Kung VW; Hassam R; Morton AJ; Jones S Neuroscience; 2007 Jun; 146(4):1571-80. PubMed ID: 17478055 [TBL] [Abstract][Full Text] [Related]
69. Differential effects of the Huntington's disease CAG mutation in striatum and cerebellum are quantitative not qualitative. Fossale E; Seong IS; Coser KR; Shioda T; Kohane IS; Wheeler VC; Gusella JF; MacDonald ME; Lee JM Hum Mol Genet; 2011 Nov; 20(21):4258-67. PubMed ID: 21840924 [TBL] [Abstract][Full Text] [Related]
70. Increased metabolism in the R6/2 mouse model of Huntington's disease. van der Burg JM; Bacos K; Wood NI; Lindqvist A; Wierup N; Woodman B; Wamsteeker JI; Smith R; Deierborg T; Kuhar MJ; Bates GP; Mulder H; Erlanson-Albertsson C; Morton AJ; Brundin P; Petersén A; Björkqvist M Neurobiol Dis; 2008 Jan; 29(1):41-51. PubMed ID: 17920283 [TBL] [Abstract][Full Text] [Related]
71. Intracerebral transplantation of neural stem cells combined with trehalose ingestion alleviates pathology in a mouse model of Huntington's disease. Yang CR; Yu RK J Neurosci Res; 2009 Jan; 87(1):26-33. PubMed ID: 18683244 [TBL] [Abstract][Full Text] [Related]
72. Quantitative Electroencephalographic Analysis Provides an Early-Stage Indicator of Disease Onset and Progression in the zQ175 Knock-In Mouse Model of Huntington's Disease. Fisher SP; Schwartz MD; Wurts-Black S; Thomas AM; Chen TM; Miller MA; Palmerston JB; Kilduff TS; Morairty SR Sleep; 2016 Feb; 39(2):379-91. PubMed ID: 26446107 [TBL] [Abstract][Full Text] [Related]
73. Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Petersén A ; Larsen KE; Behr GG; Romero N; Przedborski S; Brundin P; Sulzer D Hum Mol Genet; 2001 Jun; 10(12):1243-54. PubMed ID: 11406606 [TBL] [Abstract][Full Text] [Related]
74. Age-related and disease locus-specific mechanisms contribute to early remodelling of chromatin structure in Huntington's disease mice. Alcalá-Vida R; Seguin J; Lotz C; Molitor AM; Irastorza-Azcarate I; Awada A; Karasu N; Bombardier A; Cosquer B; Skarmeta JLG; Cassel JC; Boutillier AL; Sexton T; Merienne K Nat Commun; 2021 Jan; 12(1):364. PubMed ID: 33441541 [TBL] [Abstract][Full Text] [Related]
75. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Slow EJ; van Raamsdonk J; Rogers D; Coleman SH; Graham RK; Deng Y; Oh R; Bissada N; Hossain SM; Yang YZ; Li XJ; Simpson EM; Gutekunst CA; Leavitt BR; Hayden MR Hum Mol Genet; 2003 Jul; 12(13):1555-67. PubMed ID: 12812983 [TBL] [Abstract][Full Text] [Related]
76. Pathogenic mechanisms in Huntington's disease. Jones L; Hughes A Int Rev Neurobiol; 2011; 98():373-418. PubMed ID: 21907095 [TBL] [Abstract][Full Text] [Related]
77. Inactivation of the mouse Huntington's disease gene homolog Hdh. Duyao MP; Auerbach AB; Ryan A; Persichetti F; Barnes GT; McNeil SM; Ge P; Vonsattel JP; Gusella JF; Joyner AL Science; 1995 Jul; 269(5222):407-10. PubMed ID: 7618107 [TBL] [Abstract][Full Text] [Related]
78. Time course of choice reaction time deficits in the Hdh(Q92) knock-in mouse model of Huntington's disease in the operant serial implicit learning task (SILT). Trueman RC; Brooks SP; Jones L; Dunnett SB Behav Brain Res; 2008 Jun; 189(2):317-24. PubMed ID: 18367261 [TBL] [Abstract][Full Text] [Related]