BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 17715401)

  • 1. Inhibition of the Na+/dicarboxylate cotransporter by anthranilic acid derivatives.
    Pajor AM; Randolph KM
    Mol Pharmacol; 2007 Nov; 72(5):1330-6. PubMed ID: 17715401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonsteroidal anti-inflammatory drugs and other anthranilic acids inhibit the Na(+)/dicarboxylate symporter from Staphylococcus aureus.
    Pajor AM; Sun NN
    Biochemistry; 2013 Apr; 52(17):2924-32. PubMed ID: 23566164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threonine-509 is a determinant of apparent affinity for both substrate and cations in the human Na+/dicarboxylate cotransporter.
    Weerachayaphorn J; Pajor AM
    Biochemistry; 2008 Jan; 47(3):1087-93. PubMed ID: 18161988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons.
    Yodoya E; Wada M; Shimada A; Katsukawa H; Okada N; Yamamoto A; Ganapathy V; Fujita T
    J Neurochem; 2006 Apr; 97(1):162-73. PubMed ID: 16524379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping Functionally Important Residues in the Na
    Colas C; Schlessinger A; Pajor AM
    Biochemistry; 2017 Aug; 56(33):4432-4441. PubMed ID: 28731330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of transport pathways for citric acid cycle intermediates in the human colon carcinoma cell line, Caco-2.
    Weerachayaphorn J; Pajor AM
    Biochim Biophys Acta; 2008 Apr; 1778(4):1051-9. PubMed ID: 18194662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium-coupled transporters for Krebs cycle intermediates.
    Pajor AM
    Annu Rev Physiol; 1999; 61():663-82. PubMed ID: 10099705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-(p-amylcinnamoyl)anthranilic acid (ACA): a phospholipase A(2) inhibitor and TRP channel blocker.
    Harteneck C; Frenzel H; Kraft R
    Cardiovasc Drug Rev; 2007; 25(1):61-75. PubMed ID: 17445088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and functional expression of a sodium-dicarboxylate cotransporter from human kidney.
    Pajor AM
    Am J Physiol; 1996 Apr; 270(4 Pt 2):F642-8. PubMed ID: 8967342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of isoleucine-554 in lithium binding by the Na+/dicarboxylate cotransporter NaDC1.
    Pajor AM; Sun NN
    Biochemistry; 2010 Oct; 49(41):8937-43. PubMed ID: 20845974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of a Na(+)-dicarboxylate cotransporter in bovine adrenocortical cells.
    Steffgen J; Tolan D; Beéry E; Burckhardt G; Müller GA
    Pflugers Arch; 1999 Nov; 438(6):860-4. PubMed ID: 10591075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional differences between rabbit and human Na(+)-dicarboxylate cotransporters, NaDC-1 and hNaDC-1.
    Pajor AM; Sun N
    Am J Physiol; 1996 Nov; 271(5 Pt 2):F1093-9. PubMed ID: 8946005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure, function, and genomic organization of human Na(+)-dependent high-affinity dicarboxylate transporter.
    Wang H; Fei YJ; Kekuda R; Yang-Feng TL; Devoe LD; Leibach FH; Prasad PD; Ganapathy V
    Am J Physiol Cell Physiol; 2000 May; 278(5):C1019-30. PubMed ID: 10794676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, maturation, and trafficking of human Na+-dicarboxylate cotransporter NaDC1 requires the chaperone activity of cyclophilin B.
    Bergeron MJ; Bürzle M; Kovacs G; Simonin A; Hediger MA
    J Biol Chem; 2011 Apr; 286(13):11242-53. PubMed ID: 21257749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of benzylpenicillin and non-steroidal anti-inflammatory drugs with the sodium-dependent dicarboxylate transporter NaDC-3.
    Burckhardt BC; Lorenz J; Burckhardt G; Steffgen J
    Cell Physiol Biochem; 2004; 14(4-6):415-24. PubMed ID: 15319545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of the calcium-regulated citrate transport process in proximal tubule cells.
    Hering-Smith KS; Mao W; Schiro FR; Coleman-Barnett J; Pajor AM; Hamm LL
    Urolithiasis; 2014 Jun; 42(3):209-19. PubMed ID: 24652587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of sodium-dependent dicarboxylate transporter 1 (NaDC1/SLC13A2) in normal and neoplastic human kidney.
    Lee HW; Handlogten ME; Osis G; Clapp WL; Wakefield DN; Verlander JW; Weiner ID
    Am J Physiol Renal Physiol; 2017 Mar; 312(3):F427-F435. PubMed ID: 27927654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmembrane helices 3 and 4 are involved in substrate recognition by the Na+/dicarboxylate cotransporter, NaDC1.
    Oshiro N; King SC; Pajor AM
    Biochemistry; 2006 Feb; 45(7):2302-10. PubMed ID: 16475819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single nucleotide polymorphisms in the human Na+-dicarboxylate cotransporter affect transport activity and protein expression.
    Pajor AM; Sun NN
    Am J Physiol Renal Physiol; 2010 Oct; 299(4):F704-11. PubMed ID: 20610529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Citrate transport by the kidney and intestine.
    Pajor AM
    Semin Nephrol; 1999 Mar; 19(2):195-200. PubMed ID: 10192253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.