These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 17716106)
1. Nanotechnology and biomaterials for orthopedic medical applications. Balasundaram G; Webster TJ Nanomedicine (Lond); 2006 Aug; 1(2):169-76. PubMed ID: 17716106 [TBL] [Abstract][Full Text] [Related]
2. Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications. Sato M; Webster TJ Expert Rev Med Devices; 2004 Sep; 1(1):105-14. PubMed ID: 16293014 [TBL] [Abstract][Full Text] [Related]
3. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. Kumar S; Nehra M; Kedia D; Dilbaghi N; Tankeshwar K; Kim KH Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110154. PubMed ID: 31753376 [TBL] [Abstract][Full Text] [Related]
4. An overview of nano-polymers for orthopedic applications. Balasundaram G; Webster TJ Macromol Biosci; 2007 May; 7(5):635-42. PubMed ID: 17477446 [TBL] [Abstract][Full Text] [Related]
5. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Webster TJ; Ejiofor JU Biomaterials; 2004 Aug; 25(19):4731-9. PubMed ID: 15120519 [TBL] [Abstract][Full Text] [Related]
6. The era of biofunctional biomaterials in orthopedics: what does the future hold? Rehman M; Madni A; Webster TJ Expert Rev Med Devices; 2018 Mar; 15(3):193-204. PubMed ID: 29347851 [TBL] [Abstract][Full Text] [Related]
7. Increased osteoblast function on PLGA composites containing nanophase titania. Webster TJ; Smith TA J Biomed Mater Res A; 2005 Sep; 74(4):677-86. PubMed ID: 16035065 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites. McManus AJ; Doremus RH; Siegel RW; Bizios R J Biomed Mater Res A; 2005 Jan; 72(1):98-106. PubMed ID: 15538759 [TBL] [Abstract][Full Text] [Related]
10. Enhancing orthopedic implant bioactivity: refining the nanotopography. Wang G; Moya S; Lu Z; Gregurec D; Zreiqat H Nanomedicine (Lond); 2015; 10(8):1327-41. PubMed ID: 25955126 [TBL] [Abstract][Full Text] [Related]
11. Current developments and future perspectives of nanotechnology in orthopedic implants: an updated review. Liang W; Zhou C; Bai J; Zhang H; Long H; Jiang B; Dai H; Wang J; Zhang H; Zhao J Front Bioeng Biotechnol; 2024; 12():1342340. PubMed ID: 38567086 [TBL] [Abstract][Full Text] [Related]
12. Nanobiomaterial applications in orthopedics. Christenson EM; Anseth KS; van den Beucken JJ; Chan CK; Ercan B; Jansen JA; Laurencin CT; Li WJ; Murugan R; Nair LS; Ramakrishna S; Tuan RS; Webster TJ; Mikos AG J Orthop Res; 2007 Jan; 25(1):11-22. PubMed ID: 17048259 [TBL] [Abstract][Full Text] [Related]
13. [Current requirements for polymeric biomaterials in ear, nose and throat medicine]. Sternberg K Laryngorhinootologie; 2009 May; 88 Suppl 1():S1-11. PubMed ID: 19353451 [TBL] [Abstract][Full Text] [Related]
14. Nanomaterials and synergistic low-intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices. Shirwaiker RA; Samberg ME; Cohen PH; Wysk RA; Monteiro-Riviere NA Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(3):191-204. PubMed ID: 23335493 [TBL] [Abstract][Full Text] [Related]
15. Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material. Tran PA; Sarin L; Hurt RH; Webster TJ J Biomed Mater Res A; 2010 Jun; 93(4):1417-28. PubMed ID: 19918919 [TBL] [Abstract][Full Text] [Related]
16. An overview of implant materials. Simon JP; Fabry G Acta Orthop Belg; 1991; 57(1):1-5. PubMed ID: 2038938 [TBL] [Abstract][Full Text] [Related]