These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 17716123)
21. Poly(ε-caprolactone), Eudragit® RS 100 and poly(ε-caprolactone)/Eudragit® RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. Seremeta KP; Chiappetta DA; Sosnik A Colloids Surf B Biointerfaces; 2013 Feb; 102():441-9. PubMed ID: 23010128 [TBL] [Abstract][Full Text] [Related]
22. PLGA nanoparticle formulations of risperidone: preparation and neuropharmacological evaluation. Muthu MS; Rawat MK; Mishra A; Singh S Nanomedicine; 2009 Sep; 5(3):323-33. PubMed ID: 19523427 [TBL] [Abstract][Full Text] [Related]
23. Solid lipid nanoparticles (SLN)--based hydrogels as potential carriers for oral transmucosal delivery of risperidone: preparation and characterization studies. Silva AC; Amaral MH; González-Mira E; Santos D; Ferreira D Colloids Surf B Biointerfaces; 2012 May; 93():241-8. PubMed ID: 22293602 [TBL] [Abstract][Full Text] [Related]
24. Rapamycin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanoparticles: preparation, characterization and potential application in corneal transplantation. Zhang Z; Xu L; Chen H; Li X J Pharm Pharmacol; 2014 Apr; 66(4):557-63. PubMed ID: 24635557 [TBL] [Abstract][Full Text] [Related]
25. One-step preparation of poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) nanoparticles for plasmid DNA delivery. Huang MJ; Gou ML; Qian ZY; Dai M; Li XY; Cao M; Wang K; Zhao J; Yang JL; Lu Y; Tu MJ; Wei YQ J Biomed Mater Res A; 2008 Sep; 86(4):979-86. PubMed ID: 18067161 [TBL] [Abstract][Full Text] [Related]
26. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. Patel S; Chavhan S; Soni H; Babbar AK; Mathur R; Mishra AK; Sawant K J Drug Target; 2011 Jul; 19(6):468-74. PubMed ID: 20958095 [TBL] [Abstract][Full Text] [Related]
27. Formulation and Evaluation of Atorvastatin Calcium-Poly-ε-Caprolactone Nanoparticles Loaded Ocular Inserts for Sustained Release and Antiinflammatory Efficacy. Girgis GNS Curr Pharm Biotechnol; 2020; 21(15):1688-1698. PubMed ID: 32427080 [TBL] [Abstract][Full Text] [Related]
28. [Preparation and drug release property of paclitaxel nanoparticles]. Wang TW; Wu Y; Li MJ; Gao HX Zhong Yao Cai; 2009 Sep; 32(9):1447-9. PubMed ID: 20034226 [TBL] [Abstract][Full Text] [Related]
30. Non-destructive methods of characterization of risperidone solid lipid nanoparticles. Rahman Z; Zidan AS; Khan MA Eur J Pharm Biopharm; 2010 Sep; 76(1):127-37. PubMed ID: 20470882 [TBL] [Abstract][Full Text] [Related]
31. Adjustable degradation and drug release of a thermosensitive hydrogel based on a pendant cyclic ether modified poly(ε-caprolactone) and poly(ethylene glycol)co-polymer. Wang W; Deng L; Liu S; Li X; Zhao X; Hu R; Zhang J; Han H; Dong A Acta Biomater; 2012 Nov; 8(11):3963-73. PubMed ID: 22835677 [TBL] [Abstract][Full Text] [Related]
32. Development of polymeric nanoparticles with highly entrapped herbal hydrophilic drug using nanoprecipitation technique: an approach of quality by design. Vuddanda PR; Mishra A; Singh SK; Singh S Pharm Dev Technol; 2015; 20(5):579-87. PubMed ID: 24831535 [TBL] [Abstract][Full Text] [Related]
33. All-trans-retinoic acid release from core-shell type nanoparticles of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymer. Jeong YI; Kang MK; Sun HS; Kang SS; Kim HW; Moon KS; Lee KJ; Kim SH; Jung S Int J Pharm; 2004 Apr; 273(1-2):95-107. PubMed ID: 15010134 [TBL] [Abstract][Full Text] [Related]
34. Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(ɛ-caprolactone) nanoparticles: In vitro and in vivo evaluation. Xin H; Chen L; Gu J; Ren X; Wei Z; Luo J; Chen Y; Jiang X; Sha X; Fang X Int J Pharm; 2010 Dec; 402(1-2):238-47. PubMed ID: 20934500 [TBL] [Abstract][Full Text] [Related]
35. A preliminary study on MeO-PEG-PLGA-PEG-OMe nanoparticles as intravenous carriers. Duan Y; Xu J; Lin Y; Yu H; Gong T; Li Y; Zhang Z J Biomed Mater Res A; 2008 Nov; 87(2):515-23. PubMed ID: 18186066 [TBL] [Abstract][Full Text] [Related]
36. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Song N; Liu W; Tu Q; Liu R; Zhang Y; Wang J Colloids Surf B Biointerfaces; 2011 Oct; 87(2):454-63. PubMed ID: 21719259 [TBL] [Abstract][Full Text] [Related]
37. Microencapsulation of cytarabine using poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymers as surfactant agents. Diab R; Hamoudeh M; Boyron O; Elaissari A; Fessi H Drug Dev Ind Pharm; 2010 Apr; 36(4):456-69. PubMed ID: 19877831 [TBL] [Abstract][Full Text] [Related]
38. Functionalized (poly(ɛ-caprolactone))₂-poly(ethylene glycol) nanoparticles with grafting nicotinic acid as drug carriers. Suksiriworapong J; Sripha K; Kreuter J; Junyaprasert VB Int J Pharm; 2012 Feb; 423(2):562-70. PubMed ID: 22155410 [TBL] [Abstract][Full Text] [Related]
39. Poly(ethyleneglycol)-b-poly(ε-caprolactone-co-γ-hydroxyl-ε- caprolactone) bearing pendant hydroxyl groups as nanocarriers for doxorubicin delivery. Chang L; Deng L; Wang W; Lv Z; Hu F; Dong A; Zhang J Biomacromolecules; 2012 Oct; 13(10):3301-10. PubMed ID: 22931197 [TBL] [Abstract][Full Text] [Related]
40. Biodegradable nanoparticles of amphiphilic triblock copolymers based on poly(3-hydroxybutyrate) and poly(ethylene glycol) as drug carriers. Chen C; Yu CH; Cheng YC; Yu PH; Cheung MK Biomaterials; 2006 Sep; 27(27):4804-14. PubMed ID: 16740306 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]