BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17716131)

  • 21. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications.
    Li M; Guo Y; Wei Y; MacDiarmid AG; Lelkes PI
    Biomaterials; 2006 May; 27(13):2705-15. PubMed ID: 16352335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering.
    Liao S; Murugan R; Chan CK; Ramakrishna S
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):252-60. PubMed ID: 19627790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications.
    Erisken C; Kalyon DM; Wang H
    Biomaterials; 2008 Oct; 29(30):4065-73. PubMed ID: 18649939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques.
    Kidoaki S; Kwon IK; Matsuda T
    Biomaterials; 2005 Jan; 26(1):37-46. PubMed ID: 15193879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrospinning of polymeric nanofibers for tissue engineering applications: a review.
    Pham QP; Sharma U; Mikos AG
    Tissue Eng; 2006 May; 12(5):1197-211. PubMed ID: 16771634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of electrospinning in the emerging field of nanomedicine.
    Chew SY; Wen Y; Dzenis Y; Leong KW
    Curr Pharm Des; 2006; 12(36):4751-70. PubMed ID: 17168776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrospun biodegradable nanofibrous mats for tissue engineering.
    Ndreu A; Nikkola L; Ylikauppila H; Ashammakhi N; Hasirci V
    Nanomedicine (Lond); 2008 Feb; 3(1):45-60. PubMed ID: 18393666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphological and surface properties of electrospun chitosan nanofibers.
    Desai K; Kit K; Li J; Zivanovic S
    Biomacromolecules; 2008 Mar; 9(3):1000-6. PubMed ID: 18198844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrospun inorganic and polymer composite nanofibers for biomedical applications.
    Sridhar R; Sundarrajan S; Venugopal JR; Ravichandran R; Ramakrishna S
    J Biomater Sci Polym Ed; 2013; 24(4):365-85. PubMed ID: 23565681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrospun polyphosphazene nanofibers for in vitro rat endothelial cells proliferation.
    Carampin P; Conconi MT; Lora S; Menti AM; Baiguera S; Bellini S; Grandi C; Parnigotto PP
    J Biomed Mater Res A; 2007 Mar; 80(3):661-8. PubMed ID: 17051540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Periodontal ligament cellular structures engineered with electrospun poly(DL-lactide-co-glycolide) nanofibrous membrane scaffolds.
    Inanç B; Arslan YE; Seker S; Elçin AE; Elçin YM
    J Biomed Mater Res A; 2009 Jul; 90(1):186-95. PubMed ID: 18491392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performances of a portable electrospinning apparatus.
    Mouthuy PA; Groszkowski L; Ye H
    Biotechnol Lett; 2015 May; 37(5):1107-16. PubMed ID: 25549609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds.
    Ji Y; Ghosh K; Shu XZ; Li B; Sokolov JC; Prestwich GD; Clark RA; Rafailovich MH
    Biomaterials; 2006 Jul; 27(20):3782-92. PubMed ID: 16556462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrospun nanofibrous scaffolds for engineering soft connective tissues.
    James R; Toti US; Laurencin CT; Kumbar SG
    Methods Mol Biol; 2011; 726():243-58. PubMed ID: 21424454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds.
    Li M; Mondrinos MJ; Chen X; Gandhi MR; Ko FK; Lelkes PI
    J Biomed Mater Res A; 2006 Dec; 79(4):963-73. PubMed ID: 16948146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro hydrolytic degradation of hydroxyl-functionalized poly(alpha-hydroxy acid)s.
    Leemhuis M; Kruijtzer JA; Nostrum CF; Hennink WE
    Biomacromolecules; 2007 Sep; 8(9):2943-9. PubMed ID: 17715961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrospun hyaluronate-collagen nanofibrous matrix and the effects of varying the concentration of hyaluronate on the characteristics of foreskin fibroblast cells.
    Hsu FY; Hung YS; Liou HM; Shen CH
    Acta Biomater; 2010 Jun; 6(6):2140-7. PubMed ID: 20035907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.