These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17716157)

  • 1. Acid-sensitive nanoparticles filled with tumor-destroying drugs promise new method to target and kill ovarian cancer cells.
    Nanomedicine (Lond); 2006 Oct; 1(3):261-6. PubMed ID: 17716157
    [No Abstract]   [Full Text] [Related]  

  • 2. Benefit of anti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated ovarian cancer: Therapeutic efficacy and biodistribution in mice.
    Cirstoiu-Hapca A; Buchegger F; Lange N; Bossy L; Gurny R; Delie F
    J Control Release; 2010 Jun; 144(3):324-31. PubMed ID: 20219607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted paclitaxel nanoparticles modified with follicle-stimulating hormone β 81-95 peptide show effective antitumor activity against ovarian carcinoma.
    Zhang X; Chen J; Kang Y; Hong S; Zheng Y; Sun H; Xu C
    Int J Pharm; 2013 Sep; 453(2):498-505. PubMed ID: 23811008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A targeting drug delivery system for ovarian carcinoma: transferrin modified lipid coated paclitaxel-loaded nanoparticles.
    Li R; Zhang Q; Wang XY; Chen XG; He YX; Yang WY; Yang X
    Drug Res (Stuttg); 2014 Oct; 64(10):541-7. PubMed ID: 24443309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraperitoneal chemotherapy of ovarian cancer by hydrogel depot of paclitaxel nanocrystals.
    Sun B; Taha MS; Ramsey B; Torregrosa-Allen S; Elzey BD; Yeo Y
    J Control Release; 2016 Aug; 235():91-98. PubMed ID: 27238443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paclitaxel nanoparticle inhibits growth of ovarian cancer xenografts and enhances lymphatic targeting.
    Lu H; Li B; Kang Y; Jiang W; Huang Q; Chen Q; Li L; Xu C
    Cancer Chemother Pharmacol; 2007 Feb; 59(2):175-81. PubMed ID: 16718469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro &in vivo targeting behaviors of biotinylated Pluronic F127/poly(lactic acid) nanoparticles through biotin-avidin interaction.
    Xiong XY; Guo L; Gong YC; Li ZL; Li YP; Liu ZY; Zhou M
    Eur J Pharm Sci; 2012 Aug; 46(5):537-44. PubMed ID: 22538053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable nanoparticles based on linoleic acid and poly(beta-malic acid) double grafted chitosan derivatives as carriers of anticancer drugs.
    Zhao Z; He M; Yin L; Bao J; Shi L; Wang B; Tang C; Yin C
    Biomacromolecules; 2009 Mar; 10(3):565-72. PubMed ID: 19175304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyaluronic acid-paclitaxel: effects of intraperitoneal administration against CD44(+) human ovarian cancer xenografts.
    De Stefano I; Battaglia A; Zannoni GF; Prisco MG; Fattorossi A; Travaglia D; Baroni S; Renier D; Scambia G; Ferlini C; Gallo D
    Cancer Chemother Pharmacol; 2011 Jul; 68(1):107-16. PubMed ID: 20848284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel biocompatible intraperitoneal drug delivery system increases tolerability and therapeutic efficacy of paclitaxel in a human ovarian cancer xenograft model.
    Vassileva V; Grant J; De Souza R; Allen C; Piquette-Miller M
    Cancer Chemother Pharmacol; 2007 Nov; 60(6):907-14. PubMed ID: 17375303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor suppression via paclitaxel-loaded drug carriers that target inflammation marker upregulated in tumor vasculature and macrophages.
    Park S; Kang S; Chen X; Kim EJ; Kim J; Kim N; Kim J; Jin MM
    Biomaterials; 2013 Jan; 34(2):598-605. PubMed ID: 23099063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paclitaxel-loaded poly(N-vinylpyrrolidone)-b-poly(epsilon-caprolactone) nanoparticles: preparation and antitumor activity in vivo.
    Zhu Z; Li Y; Li X; Li R; Jia Z; Liu B; Guo W; Wu W; Jiang X
    J Control Release; 2010 Mar; 142(3):438-46. PubMed ID: 19896997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison in purity and antitumor effect of brand and generic paclitaxel against human ovarian cancer cells by an in vitro experimental model.
    Wang KL; Yang YC; Lai JC; Tsai TH; Lin CP; Wu YT; Chen YY; Wang SC; Chen YJ
    Drug Dev Ind Pharm; 2010 Oct; 36(10):1253-8. PubMed ID: 20818963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle-mediated drug delivery to tumor neovasculature to combat P-gp expressing multidrug resistant cancer.
    Bai F; Wang C; Lu Q; Zhao M; Ban FQ; Yu DH; Guan YY; Luan X; Liu YR; Chen HZ; Fang C
    Biomaterials; 2013 Aug; 34(26):6163-74. PubMed ID: 23706689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers.
    Yan F; Li L; Deng Z; Jin Q; Chen J; Yang W; Yeh CK; Wu J; Shandas R; Liu X; Zheng H
    J Control Release; 2013 Mar; 166(3):246-55. PubMed ID: 23306023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous quaternized chitosan nanoparticles containing paclitaxel nanocrystals improved therapeutic efficacy in non-small-cell lung cancer after oral administration.
    Lv PP; Wei W; Yue H; Yang TY; Wang LY; Ma GH
    Biomacromolecules; 2011 Dec; 12(12):4230-9. PubMed ID: 22044456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid-dendrimer hybrid nanosystem as a novel delivery system for paclitaxel to treat ovarian cancer.
    Liu Y; Ng Y; Toh MR; Chiu GNC
    J Control Release; 2015 Dec; 220(Pt A):438-446. PubMed ID: 26551345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model.
    Shao W; Paul A; Zhao B; Lee C; Rodes L; Prakash S
    Biomaterials; 2013 Dec; 34(38):10109-19. PubMed ID: 24060420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An arginine derivative contained nanostructure lipid carriers with pH-sensitive membranolytic capability for lysosomolytic anti-cancer drug delivery.
    Li S; Su Z; Sun M; Xiao Y; Cao F; Huang A; Li H; Ping Q; Zhang C
    Int J Pharm; 2012 Oct; 436(1-2):248-57. PubMed ID: 22732672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transferrin coupled vesicular system for intracellular drug delivery for the treatment of cancer: development and characterization.
    Vaidya B; Vyas SP
    J Drug Target; 2012 May; 20(4):372-80. PubMed ID: 22339366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.