BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17716178)

  • 21. Cytotoxicity of targeted PLGA nanoparticles: a systematic review.
    Chiu HI; Samad NA; Fang L; Lim V
    RSC Adv; 2021 Mar; 11(16):9433-9449. PubMed ID: 35423427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mangiferin-Loaded Polymeric Nanoparticles: Optical Characterization, Effect of Anti-topoisomerase I, and Cytotoxicity.
    Razura-Carmona FF; Pérez-Larios A; González-Silva N; Herrera-Martínez M; Medina-Torres L; Sáyago-Ayerdi SG; Sánchez-Burgos JA
    Cancers (Basel); 2019 Dec; 11(12):. PubMed ID: 31817789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formulation of gammaoryzanol-loaded nanoparticles for potential application in fortifying food products.
    Ghaderi S; Ghanbarzadeh S; Mohammadhassani Z; Hamishehkar H
    Adv Pharm Bull; 2014 Dec; 4(Suppl 2):549-54. PubMed ID: 25671188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a cationic polyethyleneimine-poly(lactic-
    Tracey SR; Smyth P; Herron UM; Burrows JF; Porter AJ; Barelle CJ; Scott CJ
    RSC Adv; 2023 Nov; 13(48):33721-33735. PubMed ID: 38020041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pharmaceutical Approach to Develop Novel Photosensitizer Nanoformulation: An Example of Design and Characterization Rationale of Chlorophyll α Derivative.
    Sokol MB; Beganovskaya VA; Mollaeva MR; Yabbarov NG; Chirkina MV; Belykh DV; Startseva OM; Egorov AE; Kostyukov AA; Kuzmin VA; Lomakin SM; Shilkina NG; Krivandin AV; Shatalova OV; Gradova MA; Abakumov MA; Nikitin AA; Maksimova VP; Kirsanov KI; Nikolskaya ED
    Pharmaceutics; 2024 Jan; 16(1):. PubMed ID: 38258135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Vitro Release Study of the Polymeric Drug Nanoparticles: Development and Validation of a Novel Method.
    Weng J; Tong HHY; Chow SF
    Pharmaceutics; 2020 Aug; 12(8):. PubMed ID: 32759786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The sweetest polymer nanoparticles: opportunities ahead for glycogen in nanomedicine.
    Besford QA
    Soft Matter; 2024 May; 20(17):3577-3584. PubMed ID: 38629336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Internalization of Metal-Organic Framework Nanoparticles in Human Vascular Cells: Implications for Cardiovascular Disease Therapy.
    Al-Ansari DE; Mohamed NA; Marei I; Zekri A; Kameno Y; Davies RP; Lickiss PD; Rahman MM; Abou-Saleh H
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32471187
    [No Abstract]   [Full Text] [Related]  

  • 29. Retracted: Study on the Mechanism of Action of Paclitaxel-Loaded Polylactic-co-glycolic Acid Nanoparticles in Non-Small-Cell Lung Carcinoma Cells.
    Methods In Medicine CAM
    Comput Math Methods Med; 2023; 2023():9867605. PubMed ID: 37416209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vitamin E TPGS as a molecular biomaterial for drug delivery.
    Zhang Z; Tan S; Feng SS
    Biomaterials; 2012 Jun; 33(19):4889-906. PubMed ID: 22498300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Obstructive sleep apnoea and coronary revascularisation outcomes.
    Chew AY; Lee CH
    AsiaIntervention; 2023 Sep; 9(2):105-113. PubMed ID: 37736206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vitamin E TPGS-Based Nanomedicine, Nanotheranostics, and Targeted Drug Delivery: Past, Present, and Future.
    Mehata AK; Setia A; Vikas ; Malik AK; Hassani R; Dailah HG; Alhazmi HA; Albarraq AA; Mohan S; Muthu MS
    Pharmaceutics; 2023 Feb; 15(3):. PubMed ID: 36986583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combating atherosclerosis with targeted nanomedicines: recent advances and future prospective.
    Nakhlband A; Eskandani M; Omidi Y; Saeedi N; Ghaffari S; Barar J; Garjani A
    Bioimpacts; 2018; 8(1):59-75. PubMed ID: 29713603
    [No Abstract]   [Full Text] [Related]  

  • 34. Prediction of the partition coefficients using QSPR modeling and simulation of paclitaxel release from the diffusion-controlled drug delivery devices.
    Pramanik A; Garg S
    Drug Deliv Transl Res; 2018 Oct; 8(5):1300-1312. PubMed ID: 29700777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading.
    Han FY; Thurecht KJ; Whittaker AK; Smith MT
    Front Pharmacol; 2016; 7():185. PubMed ID: 27445821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Paclitaxel Nano-Delivery Systems: A Comprehensive Review.
    Ma P; Mumper RJ
    J Nanomed Nanotechnol; 2013 Feb; 4(2):1000164. PubMed ID: 24163786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-ligand poly(L-lactic-co-glycolic acid) nanoparticles inhibit activation of endothelial cells.
    Xu H; Kona S; Su LC; Tsai YT; Dong JF; Brilakis ES; Tang L; Banerjee S; Nguyen KT
    J Cardiovasc Transl Res; 2013 Aug; 6(4):570-8. PubMed ID: 23640308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A physical model for the size-dependent cellular uptake of nanoparticles modified with cationic surfactants.
    Xu A; Yao M; Xu G; Ying J; Ma W; Li B; Jin Y
    Int J Nanomedicine; 2012; 7():3547-54. PubMed ID: 22848178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pretreatment with intraluminal rapamycin nanoparticle perfusion inhibits neointimal hyperplasia in a rabbit vein graft model.
    Liu K; Cao G; Zhang X; Liu R; Zou W; Wu S
    Int J Nanomedicine; 2010 Oct; 5():853-60. PubMed ID: 21042547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current advances in research and clinical applications of PLGA-based nanotechnology.
    Lü JM; Wang X; Marin-Muller C; Wang H; Lin PH; Yao Q; Chen C
    Expert Rev Mol Diagn; 2009 May; 9(4):325-41. PubMed ID: 19435455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.