These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17716409)

  • 1. Analysis of composite structure and primordial wood remains in petrified wood.
    Nowak J; Nowak D; Chevallier P; Lekki J; Van Grieken R; Kuczumow A
    Appl Spectrosc; 2007 Aug; 61(8):889-95. PubMed ID: 17716409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman and cathodoluminescence spectroscopic investigations on Permian fossil wood from Chemnitz--a contribution to the study of the permineralisation process.
    Witke K; Götze J; Rössler R; Dietrich D; Marx G
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Oct; 60(12):2903-12. PubMed ID: 15350928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic studies of wood fossils from the Crato Formation, Cretaceous Period.
    da Silva JH; Freire PT; Abagaro BT; Silva JA; Saraiva GD; de Lima FJ; Barros OA; Bantim RA; Saraiva AA; Viana BC
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():324-9. PubMed ID: 23856041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomical descriptions of silicified woods from Madagascar and Indonesia by scanning electron microscopy.
    Yoon CJ; Kim KW
    Micron; 2008 Oct; 39(7):825-31. PubMed ID: 18280171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method for automatically identifying spectra of different wood cell wall layers in Raman imaging data set.
    Zhang X; Ji Z; Zhou X; Ma JF; Hu YH; Xu F
    Anal Chem; 2015 Jan; 87(2):1344-50. PubMed ID: 25531490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microanalytical approaches on the silicification process of wood fossil from Jasinga, West Java, Indonesia.
    Harbowo DG; Aswan ; Zaim Y; Chaerun SK; Chaerun RI; Astuti W; Sato T
    Sci Rep; 2024 Aug; 14(1):19101. PubMed ID: 39154137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic analysis and X-ray diffraction of trunk fossils from the Parnaíba Basin, Northeast Brazil.
    Alencar WJ; Santos FE; Cisneros JC; da Silva JH; Freire PT; Viana BC
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():1052-8. PubMed ID: 25173521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the isotopic ratio 129I/I in petrified wood.
    Jabbar T; Steier P; Wallner G; Cichocki O; Sterba JH
    J Environ Radioact; 2013 Jun; 120():33-8. PubMed ID: 23416227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron, proton and photon induced X-ray microprobes: analytic sensitivity versus spatial resolution.
    Grodzins L
    Neurotoxicology; 1983; 4(3):23-33. PubMed ID: 6318167
    [No Abstract]   [Full Text] [Related]  

  • 10. Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized precambrian fossils.
    Schopf JW; Kudryavtsev AB; Agresti DG; Czaja AD; Wdowiak TJ
    Astrobiology; 2005 Jun; 5(3):333-71. PubMed ID: 15941380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mid-infrared diffuse reflectance spectroscopic examination of charred pine wood, bark, cellulose, and lignin: implications for the quantitative determination of charcoal in soils.
    Reeves JB; McCarty GW; Rutherford DW; Wershaw RL
    Appl Spectrosc; 2008 Feb; 62(2):182-9. PubMed ID: 18284794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thorough chemical modification of wood-based lignocellulosic materials in ionic liquids.
    Xie H; King A; Kilpelainen I; Granstrom M; Argyropoulos DS
    Biomacromolecules; 2007 Dec; 8(12):3740-8. PubMed ID: 17979237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A versatile strategy for grafting polymers to wood cell walls.
    Keplinger T; Cabane E; Chanana M; Hass P; Merk V; Gierlinger N; Burgert I
    Acta Biomater; 2015 Jan; 11():256-63. PubMed ID: 25242649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ infrared microspectroscopy of approximately 850 million-year-old prokaryotic fossils.
    Igisu M; Nakashima S; Ueno Y; Awramik SM; Maruyama S
    Appl Spectrosc; 2006 Oct; 60(10):1111-20. PubMed ID: 17059662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy.
    Gierlinger N; Schwanninger M; Reinecke A; Burgert I
    Biomacromolecules; 2006 Jul; 7(7):2077-81. PubMed ID: 16827572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural quantification of wood fibre surfaces--morphological effects of pulping and enzymatic treatment.
    Chinga-Carrasco G; Johnsen PO; Øyaas K
    Micron; 2010 Aug; 41(6):648-59. PubMed ID: 20363639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection.
    Wierzchos J; Sancho LG; Ascaso C
    Environ Microbiol; 2005 Apr; 7(4):566-75. PubMed ID: 15816933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the Structure and Acid-Base Properties of Bulk Wood by FT-Raman Spectroscopy.
    Shen Q; Rahiala H; Rosenholm JB
    J Colloid Interface Sci; 1998 Oct; 206(2):558-568. PubMed ID: 9756668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier-transform Raman spectroscopic study of a Neolithic waterlogged wood assemblage.
    Petrou M; Edwards HG; Janaway RC; Thompson GB; Wilson AS
    Anal Bioanal Chem; 2009 Dec; 395(7):2131-8. PubMed ID: 19834692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine structure and X-ray microanalysis of silicified woods from a Tertiary basin Pohang, Korea by scanning electron microscopy.
    Kim KW; Yoon CJ; Kim PG; Lee MB; Lim JH
    Micron; 2009; 40(5-6):519-25. PubMed ID: 19447630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.