These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 17716632)

  • 1. Generalizing the dynamic field theory of spatial cognition across real and developmental time scales.
    Simmering VR; Schutte AR; Spencer JP
    Brain Res; 2008 Apr; 1202():68-86. PubMed ID: 17716632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generality with specificity: the dynamic field theory generalizes across tasks and time scales.
    Simmering VR; Spencer JP
    Dev Sci; 2008 Jul; 11(4):541-55. PubMed ID: 18576962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tests of the dynamic field theory and the spatial precision hypothesis: capturing a qualitative developmental transition in spatial working memory.
    Schutte AR; Spencer JP
    J Exp Psychol Hum Percept Perform; 2009 Dec; 35(6):1698-725. PubMed ID: 19968430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The emergent executive: a dynamic field theory of the development of executive function.
    Buss AT; Spencer JP
    Monogr Soc Res Child Dev; 2014 Jun; 79(2):vii, 1-103. PubMed ID: 24818836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Reference Ability Neural Network Study: motivation, design, and initial feasibility analyses.
    Stern Y; Habeck C; Steffener J; Barulli D; Gazes Y; Razlighi Q; Shaked D; Salthouse T
    Neuroimage; 2014 Dec; 103():139-151. PubMed ID: 25245813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Reference Ability Neural Network Study: Life-time stability of reference-ability neural networks derived from task maps of young adults.
    Habeck C; Gazes Y; Razlighi Q; Steffener J; Brickman A; Barulli D; Salthouse T; Stern Y
    Neuroimage; 2016 Jan; 125():693-704. PubMed ID: 26522424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A layered neural architecture for the consolidation, maintenance, and updating of representations in visual working memory.
    Johnson JS; Spencer JP; Schöner G
    Brain Res; 2009 Nov; 1299():17-32. PubMed ID: 19607817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects.
    LaBar KS; Gitelman DR; Parrish TB; Mesulam M
    Neuroimage; 1999 Dec; 10(6):695-704. PubMed ID: 10600415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalizing the dynamic field theory of the A-not-B error beyond infancy: three-year-olds' delay- and experience-dependent location memory biases.
    Schutte AR; Spencer JP
    Child Dev; 2002; 73(2):377-404. PubMed ID: 11949898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Functional Relevance of Task-State Functional Connectivity.
    Cole MW; Ito T; Cocuzza C; Sanchez-Romero R
    J Neurosci; 2021 Mar; 41(12):2684-2702. PubMed ID: 33542083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of Dynamic Systems Theory to Cognition and Development: New Frontiers.
    Perone S; Simmering VR
    Adv Child Dev Behav; 2017; 52():43-80. PubMed ID: 28215288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neuronal model of a global workspace in effortful cognitive tasks.
    Dehaene S; Kerszberg M; Changeux JP
    Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14529-34. PubMed ID: 9826734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-Driven Extraction of a Nested Model of Human Brain Function.
    Bolt T; Nomi JS; Yeo BTT; Uddin LQ
    J Neurosci; 2017 Jul; 37(30):7263-7277. PubMed ID: 28634305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes in neural activation and psychophysiological interaction patterns of brain regions associated with interference control and time perception.
    Neufang S; Fink GR; Herpertz-Dahlmann B; Willmes K; Konrad K
    Neuroimage; 2008 Nov; 43(2):399-409. PubMed ID: 18708149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of Dynamic Systems Theory to Cognitive Development.
    Spencer JP; Austin A; Schutte AR
    Cogn Dev; 2012; 27(4):401-418. PubMed ID: 26052181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development.
    DeAngelis GC; Ohzawa I; Freeman RD
    J Neurophysiol; 1993 Apr; 69(4):1091-117. PubMed ID: 8492151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.
    Miconi T
    Elife; 2017 Feb; 6():. PubMed ID: 28230528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age- and sex-related disturbance in a battery of sensorimotor and cognitive tasks in Kunming mice.
    Chen GH; Wang YJ; Zhang LQ; Zhou JN
    Physiol Behav; 2004 Dec; 83(3):531-41. PubMed ID: 15581676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human hippocampus: cognitive maps or relational memory?
    Kumaran D; Maguire EA
    J Neurosci; 2005 Aug; 25(31):7254-9. PubMed ID: 16079407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.