BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 17716674)

  • 1. Ecdysteroids, juvenile hormone and insect neuropeptides: Recent successes and remaining major challenges.
    De Loof A
    Gen Comp Endocrinol; 2008 Jan; 155(1):3-13. PubMed ID: 17716674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroendocrinological and molecular aspects of insect reproduction.
    Simonet G; Poels J; Claeys I; Van Loy T; Franssens V; De Loof A; Broeck JV
    J Neuroendocrinol; 2004 Aug; 16(8):649-59. PubMed ID: 15271057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum.
    Hauser F; Cazzamali G; Williamson M; Park Y; Li B; Tanaka Y; Predel R; Neupert S; Schachtner J; Verleyen P; Grimmelikhuijzen CJ
    Front Neuroendocrinol; 2008 Jan; 29(1):142-65. PubMed ID: 18054377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian orchestration of developmental hormones in the insect, Rhodnius prolixus.
    Steel CG; Vafopoulou X
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Jul; 144(3):351-64. PubMed ID: 16702005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PACAP and PDF signaling in the regulation of mammalian and insect circadian rhythms.
    Mertens I; Husson SJ; Janssen T; Lindemans M; Schoofs L
    Peptides; 2007 Sep; 28(9):1775-83. PubMed ID: 17586087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of ecdysteroidogenesis in prothoracic glands of insects: a review.
    Marchal E; Vandersmissen HP; Badisco L; Van de Velde S; Verlinden H; Iga M; Van Wielendaele P; Huybrechts R; Simonet G; Smagghe G; Vanden Broeck J
    Peptides; 2010 Mar; 31(3):506-19. PubMed ID: 19723550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and partial characterization of a gene from trachea of Manduca sexta that requires and is negatively regulated by ecdysteroids.
    Mészáros M; Morton DB
    Dev Biol; 1994 Apr; 162(2):618-30. PubMed ID: 8150220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pheromone biosynthesis activating neuropeptide (PBAN): regulatory role and mode of action.
    Rafaeli A
    Gen Comp Endocrinol; 2009 May; 162(1):69-78. PubMed ID: 18495120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico cloning of genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors in a spider mite.
    Veenstra JA; Rombauts S; Grbić M
    Insect Biochem Mol Biol; 2012 Apr; 42(4):277-95. PubMed ID: 22214827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FXPRL-amide peptides induce ecdysteroidogenesis through a G-protein coupled receptor expressed in the prothoracic gland of Bombyx mori.
    Watanabe K; Hull JJ; Niimi T; Imai K; Matsumoto S; Yaginuma T; Kataoka H
    Mol Cell Endocrinol; 2007 Jul; 273(1-2):51-8. PubMed ID: 17590269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex steroid-peptide-receptor cascade controls insect ecdysis.
    Zitnan D; Kim YJ; Zitnanová I; Roller L; Adams ME
    Gen Comp Endocrinol; 2007; 153(1-3):88-96. PubMed ID: 17507015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera.
    Hauser F; Cazzamali G; Williamson M; Blenau W; Grimmelikhuijzen CJ
    Prog Neurobiol; 2006 Sep; 80(1):1-19. PubMed ID: 17070981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PDF has found its receptor.
    Helfrich-Förster C
    Neuron; 2005 Oct; 48(2):161-3. PubMed ID: 16242393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hormonal control of insect ecdysis: endocrine cascades for coordinating behavior with physiology.
    Truman JW
    Vitam Horm; 2005; 73():1-30. PubMed ID: 16399406
    [No Abstract]   [Full Text] [Related]  

  • 15. A neuromedin-pyrokinin-like neuropeptide signaling system in Caenorhabditis elegans.
    Lindemans M; Janssen T; Husson SJ; Meelkop E; Temmerman L; Clynen E; Mertens I; Schoofs L
    Biochem Biophys Res Commun; 2009 Feb; 379(3):760-4. PubMed ID: 19133232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhythmic steroidogenesis by the prothoracic glands of the insect Rhodnius prolixus in the absence of rhythmic neuropeptide input: implications for the role of prothoracicotropic hormone.
    Pelc D; Steel CG
    Gen Comp Endocrinol; 1997 Dec; 108(3):358-65. PubMed ID: 9405112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin-like and testis ecdysiotropin neuropeptides are regulated by the circadian timing system in the brain during larval-adult development in the insect Rhodnius prolixus (Hemiptera).
    Vafopoulou X; Steel CG
    Gen Comp Endocrinol; 2012 Nov; 179(2):277-88. PubMed ID: 22964530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression during metamorphosis: an ideal model for post-embryonic development.
    Tata JR
    Bioessays; 1993 Apr; 15(4):239-48. PubMed ID: 8517853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genes encoding putative Takeout/juvenile hormone binding proteins in the honeybee (Apis mellifera) and modulation by age and juvenile hormone of the takeout-like gene GB19811.
    Hagai T; Cohen M; Bloch G
    Insect Biochem Mol Biol; 2007 Jul; 37(7):689-701. PubMed ID: 17550825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data.
    Hauser F; Williamson M; Cazzamali G; Grimmelikhuijzen CJ
    Brief Funct Genomic Proteomic; 2006 Feb; 4(4):321-30. PubMed ID: 17202123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.