BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 17716833)

  • 1. Genome history in the symbiotic hybrid Euglena gracilis.
    Ahmadinejad N; Dagan T; Martin W
    Gene; 2007 Nov; 402(1-2):35-9. PubMed ID: 17716833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of multiple, independent gene fusion events for the fifth and sixth enzymes of pyrimidine biosynthesis in different eukaryotic groups.
    Makiuchi T; Nara T; Annoura T; Hashimoto T; Aoki T
    Gene; 2007 Jun; 394(1-2):78-86. PubMed ID: 17383832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis.
    Robertson DL; Tartar A
    Mol Biol Evol; 2006 May; 23(5):1048-55. PubMed ID: 16495348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phylogenomic approach for studying plastid endosymbiosis.
    Moustafa A; Chan CX; Danforth M; Zear D; Ahmed H; Jadhav N; Savage T; Bhattacharya D
    Genome Inform; 2008; 21():165-76. PubMed ID: 19425156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor.
    Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T
    Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis.
    Kořený L; Oborník M
    Genome Biol Evol; 2011; 3():359-64. PubMed ID: 21444293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast phosphoglycerate kinase from Euglena gracilis: endosymbiotic gene replacement going against the tide.
    Nowitzki U; Gelius-Dietrich G; Schwieger M; Henze K; Martin W
    Eur J Biochem; 2004 Oct; 271(20):4123-31. PubMed ID: 15479241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supertrees and symbiosis in eukaryote genome evolution.
    Esser C; Martin W
    Trends Microbiol; 2007 Oct; 15(10):435-7. PubMed ID: 17884500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression patterns in Euglena gracilis: insights into the cellular response to environmental stress.
    Dos Santos Ferreira V; Rocchetta I; Conforti V; Bench S; Feldman R; Levin MJ
    Gene; 2007 Mar; 389(2):136-45. PubMed ID: 17197134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbe Profile:
    Zoltner M; Field MC
    Microbiology (Reading); 2022 Sep; 168(9):. PubMed ID: 36178464
    [No Abstract]   [Full Text] [Related]  

  • 11. Unusual features of fibrillarin cDNA and gene structure in Euglena gracilis: evolutionary conservation of core proteins and structural predictions for methylation-guide box C/D snoRNPs throughout the domain Eucarya.
    Russell AG; Watanabe Y; Charette JM; Gray MW
    Nucleic Acids Res; 2005; 33(9):2781-91. PubMed ID: 15894796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of genes and organisms: the tree/web of life in light of horizontal gene transfer.
    Olendzenski L; Gogarten JP
    Ann N Y Acad Sci; 2009 Oct; 1178():137-45. PubMed ID: 19845634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis.
    Ogbonna JC; Ichige E; Tanaka H
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):532-8. PubMed ID: 11954802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of the chloroplast genome in photosynthetic euglenoids: a comparison of Eutreptia viridis and Euglena gracilis (Euglenophyta).
    Wiegert KE; Bennett MS; Triemer RE
    Protist; 2012 Nov; 163(6):832-43. PubMed ID: 22364772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution.
    Henze K; Badr A; Wettern M; Cerff R; Martin W
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9122-6. PubMed ID: 7568085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A possible role for short introns in the acquisition of stroma-targeting peptides in the flagellate Euglena gracilis.
    Vesteg M; Vacula R; Steiner JM; Mateásiková B; Löffelhardt W; Brejová B; Krajcovic J
    DNA Res; 2010 Aug; 17(4):223-31. PubMed ID: 20587589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastid endosymbiosis, genome evolution and the origin of green plants.
    Stiller JW
    Trends Plant Sci; 2007 Sep; 12(9):391-6. PubMed ID: 17698402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular approaches to the endosymbiotic hypothesis.
    Phillips DO; Carr NG
    Ann N Y Acad Sci; 1981; 361():298-311. PubMed ID: 6787964
    [No Abstract]   [Full Text] [Related]  

  • 19. Transcriptome, proteome and draft genome of Euglena gracilis.
    Ebenezer TE; Zoltner M; Burrell A; Nenarokova A; Novák Vanclová AMG; Prasad B; Soukal P; Santana-Molina C; O'Neill E; Nankissoor NN; Vadakedath N; Daiker V; Obado S; Silva-Pereira S; Jackson AP; Devos DP; Lukeš J; Lebert M; Vaughan S; Hampl V; Carrington M; Ginger ML; Dacks JB; Kelly S; Field MC
    BMC Biol; 2019 Feb; 17(1):11. PubMed ID: 30732613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis.
    Hadariová L; Vesteg M; Birčák E; Schwartzbach SD; Krajčovič J
    Curr Genet; 2017 May; 63(2):331-341. PubMed ID: 27553633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.