These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17716833)

  • 21. Genomic analyses and the origin of the eukaryotes.
    Rivera MC
    Chem Biodivers; 2007 Nov; 4(11):2631-8. PubMed ID: 18027376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene expression of a protein, JB70, related to rat alpha1-acid glycoprotein in Euglena gracilis.
    Durand G; Delranc C; Bonaly J; Chacun H; Porquet D; Barque JP
    Biochem Biophys Res Commun; 1997 May; 234(3):544-8. PubMed ID: 9175748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A large collection of compact box C/D snoRNAs and their isoforms in Euglena gracilis: structural, functional and evolutionary insights.
    Russell AG; Schnare MN; Gray MW
    J Mol Biol; 2006 Apr; 357(5):1548-65. PubMed ID: 16497322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstructing evolution: gene transfer from plastids to the nucleus.
    Bock R; Timmis JN
    Bioessays; 2008 Jun; 30(6):556-66. PubMed ID: 18478535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for the late origin of introns in chloroplast genes from an evolutionary analysis of the genus Euglena.
    Thompson MD; Copertino DW; Thompson E; Favreau MR; Hallick RB
    Nucleic Acids Res; 1995 Dec; 23(23):4745-52. PubMed ID: 8532514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis.
    Záhonová K; Hadariová L; Vacula R; Yurchenko V; Eliáš M; Krajčovič J; Vesteg M
    FEBS Lett; 2014 Mar; 588(5):783-8. PubMed ID: 24492004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of reticulate evolution on genome phylogeny.
    Beiko RG; Doolittle WF; Charlebois RL
    Syst Biol; 2008 Dec; 57(6):844-56. PubMed ID: 19085328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of prokaryotic homologues indicates an endosymbiotic origin for the alternative oxidases of mitochondria (AOX) and chloroplasts (PTOX).
    Atteia A; van Lis R; van Hellemond JJ; Tielens AG; Martin W; Henze K
    Gene; 2004 Apr; 330():143-8. PubMed ID: 15087133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Eukaryotic origin of glyceraldehyde-3-phosphate dehydrogenase genes in Clostridium thermocellum and Clostridium cellulolyticum genomes and putative fates of the exogenous gene in the subsequent genome evolution.
    Takishita K; Inagaki Y
    Gene; 2009 Jul; 441(1-2):22-7. PubMed ID: 18420358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.
    Ku C; Nelson-Sathi S; Roettger M; Garg S; Hazkani-Covo E; Martin WF
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10139-46. PubMed ID: 25733873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids.
    Keeling PJ
    Methods Mol Biol; 2009; 532():501-15. PubMed ID: 19271204
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of reductive genome evolution in mitochondria and obligate intracellular microbes.
    Khachane AN; Timmis KN; Martins dos Santos VA
    Mol Biol Evol; 2007 Feb; 24(2):449-56. PubMed ID: 17108184
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Genetic-evolutionary basis of symbiosis doctrine].
    Provorov NA
    Zh Obshch Biol; 2001; 62(6):472-95. PubMed ID: 11871266
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Cordoba J; Perez E; Van Vlierberghe M; Bertrand AR; Lupo V; Cardol P; Baurain D
    Genes (Basel); 2021 May; 12(6):. PubMed ID: 34072576
    [No Abstract]   [Full Text] [Related]  

  • 35. Phylogenetic affinity of mitochondria of Euglena gracilis and kinetoplastids using cytochrome oxidase I and hsp60.
    Yasuhira S; Simpson L
    J Mol Evol; 1997 Mar; 44(3):341-7. PubMed ID: 9060401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chloroplast Genome Evolution in the Euglenaceae.
    Bennett MS; Triemer RE
    J Eukaryot Microbiol; 2015; 62(6):773-85. PubMed ID: 25976746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae.
    Perez E; Lapaille M; Degand H; Cilibrasi L; Villavicencio-Queijeiro A; Morsomme P; González-Halphen D; Field MC; Remacle C; Baurain D; Cardol P
    Mitochondrion; 2014 Nov; 19 Pt B():338-49. PubMed ID: 24561571
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein synthesis in cadmium- and pentachlorophenol-tolerant Euglena gracilis.
    Barque JP; Abahamid A; Bourezgui Y; Chacun H; Bonaly J
    Environ Res; 1995 Jul; 70(1):70-4. PubMed ID: 8603662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Endosymbiosis: double-take on plastid origins.
    Archibald JM
    Curr Biol; 2006 Sep; 16(17):R690-2. PubMed ID: 16950094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glucan synthase-like 2 is indispensable for paramylon synthesis in Euglena gracilis.
    Tanaka Y; Ogawa T; Maruta T; Yoshida Y; Arakawa K; Ishikawa T
    FEBS Lett; 2017 May; 591(10):1360-1370. PubMed ID: 28423179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.