These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 17717108)
21. Differential induction of MyD88- and TRIF-dependent pathways in equine monocytes by Toll-like receptor agonists. Figueiredo MD; Vandenplas ML; Hurley DJ; Moore JN Vet Immunol Immunopathol; 2009 Jan; 127(1-2):125-34. PubMed ID: 19019456 [TBL] [Abstract][Full Text] [Related]
22. Fluorescence resonance energy transfer analysis of alpha 2a-adrenergic receptor activation reveals distinct agonist-specific conformational changes. Zürn A; Zabel U; Vilardaga JP; Schindelin H; Lohse MJ; Hoffmann C Mol Pharmacol; 2009 Mar; 75(3):534-41. PubMed ID: 19106230 [TBL] [Abstract][Full Text] [Related]
23. Insights into signaling from the beta2-adrenergic receptor structure. Audet M; Bouvier M Nat Chem Biol; 2008 Jul; 4(7):397-403. PubMed ID: 18560432 [TBL] [Abstract][Full Text] [Related]
24. Activation of the insulin receptor (IR) by insulin and a synthetic peptide has different effects on gene expression in IR-transfected L6 myoblasts. Jensen M; Palsgaard J; Borup R; de Meyts P; Schäffer L Biochem J; 2008 Jun; 412(3):435-45. PubMed ID: 18318661 [TBL] [Abstract][Full Text] [Related]
25. Discovery of novel acetanilide derivatives as potent and selective beta3-adrenergic receptor agonists. Maruyama T; Onda K; Hayakawa M; Matsui T; Takasu T; Ohta M Eur J Med Chem; 2009 Jun; 44(6):2533-43. PubMed ID: 19232786 [TBL] [Abstract][Full Text] [Related]
26. Beyond receptor expression levels: the relevance of target accessibility in ligand-directed pharmacodelivery systems. Ozawa MG; Zurita AJ; Dias-Neto E; Nunes DN; Sidman RL; Gelovani JG; Arap W; Pasqualini R Trends Cardiovasc Med; 2008 May; 18(4):126-32. PubMed ID: 18555185 [TBL] [Abstract][Full Text] [Related]
27. Ligand functional selectivity and quantitative pharmacology at G protein-coupled receptors. Stallaert W; Christopoulos A; Bouvier M Expert Opin Drug Discov; 2011 Aug; 6(8):811-25. PubMed ID: 22651124 [TBL] [Abstract][Full Text] [Related]
28. Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. Farhat K; Riekenberg S; Heine H; Debarry J; Lang R; Mages J; Buwitt-Beckmann U; Röschmann K; Jung G; Wiesmüller KH; Ulmer AJ J Leukoc Biol; 2008 Mar; 83(3):692-701. PubMed ID: 18056480 [TBL] [Abstract][Full Text] [Related]
29. G-protein-coupled receptor-focused drug discovery using a target class platform approach. Heilker R; Wolff M; Tautermann CS; Bieler M Drug Discov Today; 2009 Mar; 14(5-6):231-40. PubMed ID: 19121411 [TBL] [Abstract][Full Text] [Related]
30. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT(2A) receptors. Blaazer AR; Smid P; Kruse CG ChemMedChem; 2008 Sep; 3(9):1299-309. PubMed ID: 18666267 [TBL] [Abstract][Full Text] [Related]
31. Ligand supplementation as a method to increase soluble heterologous protein production. Hozjan V; Guo K; Wu X; Oppermann U Expert Rev Proteomics; 2008 Feb; 5(1):137-43. PubMed ID: 18282129 [TBL] [Abstract][Full Text] [Related]
32. Non-conventional Frizzled ligands and Wnt receptors. Hendrickx M; Leyns L Dev Growth Differ; 2008 May; 50(4):229-43. PubMed ID: 18366384 [TBL] [Abstract][Full Text] [Related]
33. Role of the extracellular amino terminus and first membrane-spanning helix of dopamine D1 and D5 receptors in shaping ligand selectivity and efficacy. D'Aoust JP; Tiberi M Cell Signal; 2010 Jan; 22(1):106-16. PubMed ID: 19786093 [TBL] [Abstract][Full Text] [Related]
34. Membrane signalling complexes: implications for development of functionally selective ligands modulating heptahelical receptor signalling. Piñeyro G Cell Signal; 2009 Feb; 21(2):179-85. PubMed ID: 18790047 [TBL] [Abstract][Full Text] [Related]
35. Agonist signalling properties of radiotracers used for imaging of dopamine D2/3 receptors. van Wieringen JP; Michel MC; Janssen HM; Janssen AG; Elsinga PH; Booij J EJNMMI Res; 2014; 4():53. PubMed ID: 25977878 [TBL] [Abstract][Full Text] [Related]
36. Simulations of biased agonists in the β(2) adrenergic receptor with accelerated molecular dynamics. Tikhonova IG; Selvam B; Ivetac A; Wereszczynski J; McCammon JA Biochemistry; 2013 Aug; 52(33):5593-603. PubMed ID: 23879802 [TBL] [Abstract][Full Text] [Related]
37. Inactivation of the constitutively active ghrelin receptor attenuates limbic seizure activity in rodents. Portelli J; Thielemans L; Ver Donck L; Loyens E; Coppens J; Aourz N; Aerssens J; Vermoesen K; Clinckers R; Schallier A; Michotte Y; Moechars D; Collingridge GL; Bortolotto ZA; Smolders I Neurotherapeutics; 2012 Jul; 9(3):658-72. PubMed ID: 22669710 [TBL] [Abstract][Full Text] [Related]
39. Unique interaction pattern for a functionally biased ghrelin receptor agonist. Sivertsen B; Lang M; Frimurer TM; Holliday ND; Bach A; Els S; Engelstoft MS; Petersen PS; Madsen AN; Schwartz TW; Beck-Sickinger AG; Holst B J Biol Chem; 2011 Jun; 286(23):20845-60. PubMed ID: 21402696 [TBL] [Abstract][Full Text] [Related]
40. Analysis of the CYP1A1 mRNA dose-response in human keratinocytes indicates that relative potencies of dioxins, furans, and PCBs are species and congener specific. Sutter CH; Bodreddigari S; Sutter TR; Carlson EA; Silkworth JB Toxicol Sci; 2010 Dec; 118(2):704-15. PubMed ID: 20819910 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]