These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 17717976)

  • 1. Control of spatial cell attachment on carbon nanofiber patterns on polycarbonate urethane.
    Bajaj P; Khang D; Webster TJ
    Int J Nanomedicine; 2006; 1(3):361-5. PubMed ID: 17717976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased macrophage density on carbon nanotube patterns on polycarbonate urethane.
    Kim JY; Khang D; Lee JE; Webster TJ
    J Biomed Mater Res A; 2009 Feb; 88(2):419-26. PubMed ID: 18306321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective adhesion and mineral deposition by osteoblasts on carbon nanofiber patterns.
    Khang D; Sato M; Price RL; Ribbe AE; Webster TJ
    Int J Nanomedicine; 2006; 1(1):65-72. PubMed ID: 17722263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation.
    Khang D; Park GE; Webster TJ
    J Biomed Mater Res A; 2008 Jul; 86(1):253-60. PubMed ID: 18186050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization, mechanical properties, and in vitro cytocompatibility evaluation of fibrous polycarbonate urethane membranes for biomedical applications.
    Arjun GN; Ramesh P
    J Biomed Mater Res A; 2012 Nov; 100(11):3042-50. PubMed ID: 22707288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy.
    Khang D; Kim SY; Liu-Snyder P; Palmore GT; Durbin SM; Webster TJ
    Biomaterials; 2007 Nov; 28(32):4756-68. PubMed ID: 17706277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes.
    Lee SJ; Choi JS; Park KS; Khang G; Lee YM; Lee HB
    Biomaterials; 2004 Aug; 25(19):4699-707. PubMed ID: 15120516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion.
    Gao B; Feng Y; Lu J; Zhang L; Zhao M; Shi C; Khan M; Guo J
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2871-8. PubMed ID: 23623108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.
    Wang F; Li Z; Lannutti JL; Wagner WR; Guan J
    Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of mesenchymal stem cells and cortical neural stem cells on carbon nanotube/polycarbonate urethane.
    Nho Y; Kim JY; Khang D; Webster TJ; Lee JE
    Nanomedicine (Lond); 2010 Apr; 5(3):409-17. PubMed ID: 20394534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of carbon nanotube (MWCNT) containing P(3HB)/bioactive glass composites for tissue engineering applications.
    Misra SK; Ohashi F; Valappil SP; Knowles JC; Roy I; Silva SR; Salih V; Boccaccini AR
    Acta Biomater; 2010 Mar; 6(3):735-42. PubMed ID: 19800427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot embossing for micropatterned cell substrates.
    Charest JL; Bryant LE; Garcia AJ; King WP
    Biomaterials; 2004 Aug; 25(19):4767-75. PubMed ID: 15120523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective bone cell adhesion on formulations containing carbon nanofibers.
    Price RL; Waid MC; Haberstroh KM; Webster TJ
    Biomaterials; 2003 May; 24(11):1877-87. PubMed ID: 12615478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-structuring of polycarbonate-urethane surfaces in order to reduce platelet activation and adhesion.
    Clauser J; Gester K; Roggenkamp J; Mager I; Maas J; Jansen SV; Steinseifer U
    J Biomater Sci Polym Ed; 2014; 25(5):504-18. PubMed ID: 24484511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wear rate evaluation of a novel polycarbonate-urethane cushion form bearing for artificial hip joints.
    Elsner JJ; Mezape Y; Hakshur K; Shemesh M; Linder-Ganz E; Shterling A; Eliaz N
    Acta Biomater; 2010 Dec; 6(12):4698-707. PubMed ID: 20633706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified polycarbonate urethane: synthesis, properties and biological investigation in vitro.
    Szelest-Lewandowska A; Masiulanis B; Szymonowicz M; Pielka S; Paluch D
    J Biomed Mater Res A; 2007 Aug; 82(2):509-20. PubMed ID: 17530635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular attachment and spatial control of cells using micro-patterned ultra-violet/ozone treatment in serum enriched media.
    Mitchell SA; Poulsson AH; Davidson MR; Emmison N; Shard AG; Bradley RH
    Biomaterials; 2004 Aug; 25(18):4079-86. PubMed ID: 15046899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the wear performance of a polycarbonate-urethane acetabular component in a hip joint simulator and comparison with UHMWPE and cross-linked UHMWPE.
    St John K; Gupta M
    J Biomater Appl; 2012 Jul; 27(1):55-65. PubMed ID: 21343216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesion of human osteoblast-like cells (Saos-2) to carbon nanotube sheets.
    Akasaka T; Yokoyama A; Matsuoka M; Hashimoto T; Abe S; Uo M; Watari F
    Biomed Mater Eng; 2009; 19(2-3):147-53. PubMed ID: 19581708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. End-point immobilization of heparin on plasma-treated surface of electrospun polycarbonate-urethane vascular graft.
    Qiu X; Lee BL; Ning X; Murthy N; Dong N; Li S
    Acta Biomater; 2017 Mar; 51():138-147. PubMed ID: 28069505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.