These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17718331)

  • 41. Correlation between helical surface waves and guided modes of an infinite immersed elastic cylinder.
    Honarvar F; Enjilela E; Sinclair AN
    Ultrasonics; 2011 Feb; 51(2):238-44. PubMed ID: 20855095
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Theoretical validation on the existence of two transverse surface waves in piezoelectric/elastic layered structures.
    Qian ZH; Hirose S
    Ultrasonics; 2012 Mar; 52(3):442-6. PubMed ID: 22074815
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dispersion of waves in porous cylinders with patchy saturation: formulation and torsional waves.
    Berryman JG; Pride SR
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1785-95. PubMed ID: 15898625
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Propagation of monopole source excited acoustic waves in a cylindrical high-density polyethylene pipeline.
    Li Z; Jing L; Murch R
    J Acoust Soc Am; 2017 Dec; 142(6):3564. PubMed ID: 29289099
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recursive Green functions technique applied to the propagation of elastic waves in layered media.
    Ferreira MS; Bauer GE; Wapenaar CP
    Ultrasonics; 2002 May; 40(1-8):355-9. PubMed ID: 12159964
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acoustic backscattering enhancements resulting from the interaction of an obliquely incident plane wave with an infinite cylinder.
    Mitri FG
    Ultrasonics; 2010 Jun; 50(7):675-82. PubMed ID: 20181372
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Elastic wave propagation in thick-walled hollow cylinders for damage localization through inner surface sensing.
    Zhang Y; Shan S; Cheng L
    Ultrasonics; 2023 Aug; 133():107027. PubMed ID: 37150121
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Natural beam focusing of non-axisymmetric guided waves in large-diameter pipes.
    Li J; Rose JL
    Ultrasonics; 2006 Jan; 44(1):35-45. PubMed ID: 16182330
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Theoretical analyses and numerical simulations of the torsional mode for two acoustic viscometers with preliminary experimental tests.
    Ai Y; Lange RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):648-58. PubMed ID: 18407854
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: a theoretical and experimental study.
    Vasseur JO; Deymier PA; Khelif A; Lambin P; Djafari-Rouhani B; Akjouj A; Dobrzynski L; Fettouhi N; Zemmouri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056608. PubMed ID: 12059732
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Finite element simulation of core inspection in helicopter rotor blades using guided waves.
    Chakrapani SK; Barnard D; Dayal V
    Ultrasonics; 2015 Sep; 62():126-35. PubMed ID: 26048172
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PZT-Based Ultrasonic Guided Wave Frequency Dispersion Characteristics of Tubular Structures for Different Interfacial Boundaries.
    Yan S; Zhang B; Song G; Lin J
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477174
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elastic wave propagation in confined granular systems.
    Somfai E; Roux JN; Snoeijer JH; van Hecke M; van Saarloos W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021301. PubMed ID: 16196550
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Numerical investigation of leaky modes in helical structural waveguides embedded into a solid medium.
    Nguyen KL; Treyssède F
    Ultrasonics; 2015 Mar; 57():125-34. PubMed ID: 25465104
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.
    Nagatani Y; Mizuno K; Saeki T; Matsukawa M; Sakaguchi T; Hosoi H
    Ultrasonics; 2008 Nov; 48(6-7):607-12. PubMed ID: 18589470
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time-resolved line focus acoustic microscopy of layered anisotropic media: application to composites.
    Wang L; Rokhlin SI
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Sep; 49(9):1231-44. PubMed ID: 12243574
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Research on the Attenuation Characteristics of High-Frequency Elastic Waves in Rock-Like Material.
    Liu X; Xiong F; Xie Q; Yang X; Chen D; Wang S
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233946
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Elastic and viscoelastic flexural wave motion in woodpecker-beak-inspired structures.
    Raut MS; Gopalakrishnan S
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33848990
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods.
    Hosokawa A
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1782-9. PubMed ID: 16240836
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy trapping in power transmission through a circular cylindrical elastic shell by finite piezoelectric transducers.
    Yang ZT; Guo SH
    Ultrasonics; 2008 Dec; 48(8):716-23. PubMed ID: 18499207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.