These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17718334)

  • 1. Rayleigh wave reflection and scattering calculation by source regeneration method.
    Wang W; Han T; Zhang X; Wu H; Shui Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jul; 54(7):1445-53. PubMed ID: 17718334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reflection and scattering characteristics of reflectors in SAW tags.
    Han T; Wang W; Wu H; Shui Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1387-90. PubMed ID: 18599427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined FEM and Green's function analysis of periodic SAW structure, application to the calculation of reflection and scattering parameters.
    Ventura P; Hodé JM; Desbois J; Solal M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Sep; 48(5):1259-74. PubMed ID: 11570750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction of frequency-dependent reflection, transmission, and scattering parameters for short metal reflectors from FEM-BEM simulations.
    Härmä S; Plessky VP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Apr; 55(4):883-9. PubMed ID: 18467234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phases of the SAW reflection and transmission coefficients for short reflectors on 128 degree LiNbO3.
    Lehtonen S; Plessky VP; Béreux N; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Dec; 51(12):1671-82. PubMed ID: 15690727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short reflectors operating at the fundamental and second harmonics on 128 degree LiNbO3.
    Lehtonen S; Plessky VP; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):343-51. PubMed ID: 15128221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The numerical analysis of general SAW and leaky wave devices using approximate Green's function representations.
    Peach RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2282-91. PubMed ID: 19942514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface acoustic wave reflection/transmission at vertical borders of piezoelectric substrates.
    Darinskii AN; Weihnacht M; Schmidt H
    Ultrasonics; 2015 Feb; 56():318-24. PubMed ID: 25234001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and Accurate Finite Transducer Analysis Method for Wireless Passive Impedance-Loaded SAW Sensors.
    Luo W; Yuan Y; Wang Y; Fu Q; Xia H; Li H
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FEM Simulation of a High-Performance 128°Y-X LiNbO
    Ma R; Liu W; Sun X; Zhou S; Lin D
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FEM/BEM for simulation of LSAW devices.
    Taziev RM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):2060-9. PubMed ID: 18019244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approximate Green's function representations for the analysis of SAW and leaky wave devices.
    Peach RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2268-81. PubMed ID: 19942513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance SAW Low Temperature Sensors with Double Electrode Transducers Based on 128° YX LiNbO
    Zhu J; Wang H; Zhang F; Ding Q
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of the leaky SAW attenuation with heavy mechanical loading.
    Koskela J; Plessky VP; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):439-49. PubMed ID: 18244195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Side radiation of Rayleigh waves from synchronous SAW resonators.
    Holmgren O; Makkonen T; Knuuttila JV; Kalo M; Plessky VP; Steichen W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Apr; 54(4):861-9. PubMed ID: 17441596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavenumber domain analysis of surface acoustic wave scattering from localized gratings on layered piezoelectric substrate.
    Zhang Q; Guo J; Qin P; Tang G; Zhang B; Hashimoto KY; Han T; Li P; Wen Y
    Ultrasonics; 2018 Aug; 88():131-136. PubMed ID: 29626807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Cascading Algorithm for 2-D FEM Simulation of Finite SAW Devices.
    Koskela J; Plessky V; Willemsen B; Turner P; Hammond B; Fenzi N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1933-1942. PubMed ID: 29994395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Full-Wave Analysis of Surface Acoustic Wave Devices for Accuracy and Fast Performance Prediction.
    Chen Z; Zhang Q; Fu S; Wang X; Qiu X; Wu H
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mode Analysis of Pt/LGS Surface Acoustic Wave Devices.
    Xu H; Jin H; Dong S; Song X; Chen J; Xuan W; Huang S; Shi L; Luo J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rayleigh wave scattering from a vertical edge of isotropic substrates.
    Darinskii AN; Weihnacht M; Schmidt H
    Ultrasonics; 2014 Sep; 54(7):1999-2005. PubMed ID: 24929564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.